{"title":"具有改进光功率的顶发射980纳米垂直腔面发射激光二极管","authors":"A. N. Al-Omari, M. Alias, K. Lear","doi":"10.1109/ICP.2012.6379873","DOIUrl":null,"url":null,"abstract":"Top-emitting, oxide-confined, polyimide-planarized 980-nm VCSELs with copper-plated heatsinks were fabricated and characterized. Increasing the plated heatsink radius from 0-μm to 4-μm larger than the mesa diameter for lasers with 8-μm oxide aperture diameter reduced the measured thermal impedance, increased the maximum bias current density, and increased the maximum output optical power achieved by a 29%, 37%, and 73%, respectively. VCSELs with oxide aperture diameter and heatsink overlap of 8-μm and 4-μm, respectively, demonstrated 17°C decrease in the internal device temperature (i.e. active region temperature) at the maximum output optical power. Devices with similar mesa diameters of 26-μm and different heatsink overlaps exhibited a threshold bias current and a total series resistance of (630±4%)μA and ~95Ω, respectively.","PeriodicalId":243533,"journal":{"name":"2012 IEEE 3rd International Conference on Photonics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-emitting 980-nm vertical-cavity surface-emitting laser diodes with improved optical power\",\"authors\":\"A. N. Al-Omari, M. Alias, K. Lear\",\"doi\":\"10.1109/ICP.2012.6379873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-emitting, oxide-confined, polyimide-planarized 980-nm VCSELs with copper-plated heatsinks were fabricated and characterized. Increasing the plated heatsink radius from 0-μm to 4-μm larger than the mesa diameter for lasers with 8-μm oxide aperture diameter reduced the measured thermal impedance, increased the maximum bias current density, and increased the maximum output optical power achieved by a 29%, 37%, and 73%, respectively. VCSELs with oxide aperture diameter and heatsink overlap of 8-μm and 4-μm, respectively, demonstrated 17°C decrease in the internal device temperature (i.e. active region temperature) at the maximum output optical power. Devices with similar mesa diameters of 26-μm and different heatsink overlaps exhibited a threshold bias current and a total series resistance of (630±4%)μA and ~95Ω, respectively.\",\"PeriodicalId\":243533,\"journal\":{\"name\":\"2012 IEEE 3rd International Conference on Photonics\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 3rd International Conference on Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP.2012.6379873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 3rd International Conference on Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP.2012.6379873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Top-emitting 980-nm vertical-cavity surface-emitting laser diodes with improved optical power
Top-emitting, oxide-confined, polyimide-planarized 980-nm VCSELs with copper-plated heatsinks were fabricated and characterized. Increasing the plated heatsink radius from 0-μm to 4-μm larger than the mesa diameter for lasers with 8-μm oxide aperture diameter reduced the measured thermal impedance, increased the maximum bias current density, and increased the maximum output optical power achieved by a 29%, 37%, and 73%, respectively. VCSELs with oxide aperture diameter and heatsink overlap of 8-μm and 4-μm, respectively, demonstrated 17°C decrease in the internal device temperature (i.e. active region temperature) at the maximum output optical power. Devices with similar mesa diameters of 26-μm and different heatsink overlaps exhibited a threshold bias current and a total series resistance of (630±4%)μA and ~95Ω, respectively.