利用最小陷阱空间计算大规模异步布尔网络的吸引子

V. Trinh, K. Hiraishi, B. Benhamou
{"title":"利用最小陷阱空间计算大规模异步布尔网络的吸引子","authors":"V. Trinh, K. Hiraishi, B. Benhamou","doi":"10.1145/3535508.3545520","DOIUrl":null,"url":null,"abstract":"Boolean Networks (BNs) play a crucial role in modeling, analyzing, and controlling biological systems. One of the most important problems on BNs is to compute all the possible attractors of a BN. There are two popular types of BNs, Synchronous BNs (SBNs) and Asynchronous BNs (ABNs). Although ABNs are considered more suitable than SBNs in modeling real-world biological systems, their attractor computation is more challenging than that of SBNs. Several methods have been proposed for computing attractors of ABNs. However, none of them can robustly handle large and complex models. In this paper, we propose a novel method called mtsNFVS for exactly computing all the attractors of an ABN based on its minimal trap spaces, where a trap space is a subspace of state space that no path can leave. The main advantage of mtsNFVS lies in opening the chance to reach easy cases for the attractor computation. We then evaluate mtsNFVS on a set of large and complex real-world models with crucial biologically motivations as well as a set of randomly generated models. The experimental results show that mtsNFVS can easily handle large-scale models and it completely outperforms the state-of-the-art method CABEAN as well as other recently notable methods.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing attractors of large-scale asynchronous boolean networks using minimal trap spaces\",\"authors\":\"V. Trinh, K. Hiraishi, B. Benhamou\",\"doi\":\"10.1145/3535508.3545520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boolean Networks (BNs) play a crucial role in modeling, analyzing, and controlling biological systems. One of the most important problems on BNs is to compute all the possible attractors of a BN. There are two popular types of BNs, Synchronous BNs (SBNs) and Asynchronous BNs (ABNs). Although ABNs are considered more suitable than SBNs in modeling real-world biological systems, their attractor computation is more challenging than that of SBNs. Several methods have been proposed for computing attractors of ABNs. However, none of them can robustly handle large and complex models. In this paper, we propose a novel method called mtsNFVS for exactly computing all the attractors of an ABN based on its minimal trap spaces, where a trap space is a subspace of state space that no path can leave. The main advantage of mtsNFVS lies in opening the chance to reach easy cases for the attractor computation. We then evaluate mtsNFVS on a set of large and complex real-world models with crucial biologically motivations as well as a set of randomly generated models. The experimental results show that mtsNFVS can easily handle large-scale models and it completely outperforms the state-of-the-art method CABEAN as well as other recently notable methods.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

布尔网络在生物系统的建模、分析和控制中起着至关重要的作用。关于BN最重要的问题之一是计算BN的所有可能吸引子。有两种流行的bn类型,同步bn (sbn)和异步bn (abn)。尽管ABNs被认为比SBNs更适合建模现实世界的生物系统,但它们的吸引子计算比SBNs更具挑战性。已经提出了几种计算abn吸引子的方法。然而,它们都不能健壮地处理大型和复杂的模型。本文提出了一种基于最小陷阱空间精确计算ABN所有吸引子的新方法mtsNFVS,其中陷阱空间是任何路径都不能离开的状态空间的子空间。mtsNFVS的主要优点在于,它为吸引子的计算提供了简单的条件。然后,我们在一组具有重要生物学动机的大型复杂现实世界模型以及一组随机生成的模型上评估mtsNFVS。实验结果表明,mtsNFVS可以很容易地处理大规模模型,并且完全优于最先进的CABEAN方法以及最近一些著名的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing attractors of large-scale asynchronous boolean networks using minimal trap spaces
Boolean Networks (BNs) play a crucial role in modeling, analyzing, and controlling biological systems. One of the most important problems on BNs is to compute all the possible attractors of a BN. There are two popular types of BNs, Synchronous BNs (SBNs) and Asynchronous BNs (ABNs). Although ABNs are considered more suitable than SBNs in modeling real-world biological systems, their attractor computation is more challenging than that of SBNs. Several methods have been proposed for computing attractors of ABNs. However, none of them can robustly handle large and complex models. In this paper, we propose a novel method called mtsNFVS for exactly computing all the attractors of an ABN based on its minimal trap spaces, where a trap space is a subspace of state space that no path can leave. The main advantage of mtsNFVS lies in opening the chance to reach easy cases for the attractor computation. We then evaluate mtsNFVS on a set of large and complex real-world models with crucial biologically motivations as well as a set of randomly generated models. The experimental results show that mtsNFVS can easily handle large-scale models and it completely outperforms the state-of-the-art method CABEAN as well as other recently notable methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信