多媒体新闻挖掘者对新兴主题的社会流

Bingkun Bao, Weiqing Min, J. Sang, Changsheng Xu
{"title":"多媒体新闻挖掘者对新兴主题的社会流","authors":"Bingkun Bao, Weiqing Min, J. Sang, Changsheng Xu","doi":"10.1145/2393347.2396483","DOIUrl":null,"url":null,"abstract":"With the overwhelming information from social media networks and news portals, it is crucial to provide users a complete package of visual and textual information with popular interests automatically. To this concern, we present a news detection and pushing system, called Me-Digger (Multimedia News Digger), which not only effectively detects emerging topics from social streams but also provides the corresponding information in multiple modalities. Me-digger is the first systematic effort to leverage three sources of data, that is, Twitter, Flickr and Google news, to output with vivid visual and textual contents on emerging topics. Enabled by a novel general-structured high-order co-clustering approach, it has a more accurate detection of emerging topics compared to the existing methods on micro-blog social streams.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Multimedia news digger on emerging topics from social streams\",\"authors\":\"Bingkun Bao, Weiqing Min, J. Sang, Changsheng Xu\",\"doi\":\"10.1145/2393347.2396483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the overwhelming information from social media networks and news portals, it is crucial to provide users a complete package of visual and textual information with popular interests automatically. To this concern, we present a news detection and pushing system, called Me-Digger (Multimedia News Digger), which not only effectively detects emerging topics from social streams but also provides the corresponding information in multiple modalities. Me-digger is the first systematic effort to leverage three sources of data, that is, Twitter, Flickr and Google news, to output with vivid visual and textual contents on emerging topics. Enabled by a novel general-structured high-order co-clustering approach, it has a more accurate detection of emerging topics compared to the existing methods on micro-blog social streams.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2396483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

面对来自社交媒体网络和新闻门户的海量信息,如何自动为用户提供一套完整的、符合大众兴趣的视觉和文字信息是至关重要的。针对这一问题,我们提出了一个新闻检测和推送系统,称为Me-Digger(多媒体新闻挖掘者),它不仅可以有效地从社交流中检测新兴话题,而且可以以多种方式提供相应的信息。Me-digger是第一个系统地利用三个数据来源,即Twitter, Flickr和Google新闻,以生动的视觉和文本内容输出新兴主题。它采用了一种新颖的通用结构高阶共聚类方法,与现有的微博社交流方法相比,它对新兴话题的检测更加准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimedia news digger on emerging topics from social streams
With the overwhelming information from social media networks and news portals, it is crucial to provide users a complete package of visual and textual information with popular interests automatically. To this concern, we present a news detection and pushing system, called Me-Digger (Multimedia News Digger), which not only effectively detects emerging topics from social streams but also provides the corresponding information in multiple modalities. Me-digger is the first systematic effort to leverage three sources of data, that is, Twitter, Flickr and Google news, to output with vivid visual and textual contents on emerging topics. Enabled by a novel general-structured high-order co-clustering approach, it has a more accurate detection of emerging topics compared to the existing methods on micro-blog social streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信