基于免疫原理的RBF神经网络优化压裂设计

Hong Liu, Guoyun Wu, Tianyou Wang, Xiaolu Wang
{"title":"基于免疫原理的RBF神经网络优化压裂设计","authors":"Hong Liu, Guoyun Wu, Tianyou Wang, Xiaolu Wang","doi":"10.1109/ICCI-CC.2012.6311171","DOIUrl":null,"url":null,"abstract":"The factors affecting performance of fractured wells are analyzed in this work. The static and dynamic geologic data of fractured well and fracturing treatment parameters obtained from 51 fractured wells in sand reservoirs of Zhongyuan oilfield are analyzed by applying the grey correlation method. Ten parameters are screened, including penetrability, porosity, net thickness, oil saturation, water cut, average daily production, and injection rate, amount cementing front spacer, amount sand-carrying agent and amount sand. With the novel Radial Basis Function neural network model based on immune principles, 13 parameters of 42 wells out of 51 are used as the input samples and the stimulation ratios as the output samples. The nonlinear interrelationship between the input samples and output samples are investigated, and a productivity prediction model of optimizing fracture design is established. The data of the rest 7 wells are used to test the model. The results show that the relative errors are all less than 7%, which proves that the novel Radial Basis Function neural network model based on immune principles has less calculation, high precision and good generalization ability.","PeriodicalId":427778,"journal":{"name":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing fracturing design with a RBF neural network based on immune principles\",\"authors\":\"Hong Liu, Guoyun Wu, Tianyou Wang, Xiaolu Wang\",\"doi\":\"10.1109/ICCI-CC.2012.6311171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The factors affecting performance of fractured wells are analyzed in this work. The static and dynamic geologic data of fractured well and fracturing treatment parameters obtained from 51 fractured wells in sand reservoirs of Zhongyuan oilfield are analyzed by applying the grey correlation method. Ten parameters are screened, including penetrability, porosity, net thickness, oil saturation, water cut, average daily production, and injection rate, amount cementing front spacer, amount sand-carrying agent and amount sand. With the novel Radial Basis Function neural network model based on immune principles, 13 parameters of 42 wells out of 51 are used as the input samples and the stimulation ratios as the output samples. The nonlinear interrelationship between the input samples and output samples are investigated, and a productivity prediction model of optimizing fracture design is established. The data of the rest 7 wells are used to test the model. The results show that the relative errors are all less than 7%, which proves that the novel Radial Basis Function neural network model based on immune principles has less calculation, high precision and good generalization ability.\",\"PeriodicalId\":427778,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2012.6311171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2012.6311171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了影响压裂井生产性能的因素。运用灰色关联法对中原油田砂储层51口压裂井的静、动态地质资料及压裂处理参数进行了分析。筛选10个参数,包括渗透率、孔隙度、净厚度、含油饱和度、含水率、平均日产量、注入速度、固井前间隔剂用量、携砂剂用量和出砂量。采用基于免疫原理的径向基函数神经网络模型,以51口井中42口井的13个参数作为输入样本,增产比作为输出样本。研究了输入样本和输出样本之间的非线性相互关系,建立了优化裂缝设计的产能预测模型。其余7口井的数据用于验证模型。结果表明,相对误差均小于7%,证明了基于免疫原理的径向基函数神经网络模型计算量少、精度高、泛化能力好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing fracturing design with a RBF neural network based on immune principles
The factors affecting performance of fractured wells are analyzed in this work. The static and dynamic geologic data of fractured well and fracturing treatment parameters obtained from 51 fractured wells in sand reservoirs of Zhongyuan oilfield are analyzed by applying the grey correlation method. Ten parameters are screened, including penetrability, porosity, net thickness, oil saturation, water cut, average daily production, and injection rate, amount cementing front spacer, amount sand-carrying agent and amount sand. With the novel Radial Basis Function neural network model based on immune principles, 13 parameters of 42 wells out of 51 are used as the input samples and the stimulation ratios as the output samples. The nonlinear interrelationship between the input samples and output samples are investigated, and a productivity prediction model of optimizing fracture design is established. The data of the rest 7 wells are used to test the model. The results show that the relative errors are all less than 7%, which proves that the novel Radial Basis Function neural network model based on immune principles has less calculation, high precision and good generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信