基于变压器的呼吸机压力预测深度学习方法

Rui Fan
{"title":"基于变压器的呼吸机压力预测深度学习方法","authors":"Rui Fan","doi":"10.1109/icicse55337.2022.9828926","DOIUrl":null,"url":null,"abstract":"As patients infected with SARS-CoV-2 are more likely to have trouble breathing, a great demand for ventilators has been generated since the COVID-19 is continuing to spread around the world. However, the research and development of ventilator control suffer from high cost, slow efficiency, and lack of automation, especially regarding the estimation of ventilator pressure. In this paper, to address this challenge and help control the mechanical ventilators better, we develop a Transformer-based deep learning method for the prediction of ventilator pressure. Based on the dataset provided by Google Brain in a Kaggle competition, we connect the Transformer encoders by residual connections to extract features from the time-series ventilator data, and successfully achieve the goal to predict the ventilator pressure with excellent performance. After applying the K-Fold cross validation technique, our Transformer-based model reaches a mean absolute error 0.1311 on the private test set. This result ranks 67/2605 (top 2.6%) in the leaderboard of Google Brain - Ventilator Pressure Prediction competition, and can get a silver medal in this Kaggle competition. This work could accelerate the development of new methods to overcome the cost barrier of ventilator control.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transformer-Based Deep Learning Method for the Prediction of Ventilator Pressure\",\"authors\":\"Rui Fan\",\"doi\":\"10.1109/icicse55337.2022.9828926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As patients infected with SARS-CoV-2 are more likely to have trouble breathing, a great demand for ventilators has been generated since the COVID-19 is continuing to spread around the world. However, the research and development of ventilator control suffer from high cost, slow efficiency, and lack of automation, especially regarding the estimation of ventilator pressure. In this paper, to address this challenge and help control the mechanical ventilators better, we develop a Transformer-based deep learning method for the prediction of ventilator pressure. Based on the dataset provided by Google Brain in a Kaggle competition, we connect the Transformer encoders by residual connections to extract features from the time-series ventilator data, and successfully achieve the goal to predict the ventilator pressure with excellent performance. After applying the K-Fold cross validation technique, our Transformer-based model reaches a mean absolute error 0.1311 on the private test set. This result ranks 67/2605 (top 2.6%) in the leaderboard of Google Brain - Ventilator Pressure Prediction competition, and can get a silver medal in this Kaggle competition. This work could accelerate the development of new methods to overcome the cost barrier of ventilator control.\",\"PeriodicalId\":177985,\"journal\":{\"name\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicse55337.2022.9828926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicse55337.2022.9828926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于感染新冠病毒的患者更容易出现呼吸困难,因此随着新冠病毒在全球范围内的持续传播,对呼吸机的需求不断增加。然而,通风机控制的研究与开发存在成本高、效率低、自动化程度低的问题,特别是在通风机压力的估算方面。在本文中,为了解决这一挑战并帮助更好地控制机械呼吸机,我们开发了一种基于变压器的深度学习方法来预测呼吸机压力。基于Google Brain在Kaggle比赛中提供的数据集,通过残差连接将Transformer编码器连接起来,从时序呼吸机数据中提取特征,成功实现了预测呼吸机压力的目标,并取得了优异的性能。在应用K-Fold交叉验证技术后,我们基于transformer的模型在私有测试集上达到平均绝对误差0.1311。该结果在Google脑-呼吸机压力预测大赛排行榜中排名67/2605(前2.6%),可获得本次Kaggle大赛银牌。这项工作可以加速新方法的发展,以克服呼吸机控制的成本障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-Based Deep Learning Method for the Prediction of Ventilator Pressure
As patients infected with SARS-CoV-2 are more likely to have trouble breathing, a great demand for ventilators has been generated since the COVID-19 is continuing to spread around the world. However, the research and development of ventilator control suffer from high cost, slow efficiency, and lack of automation, especially regarding the estimation of ventilator pressure. In this paper, to address this challenge and help control the mechanical ventilators better, we develop a Transformer-based deep learning method for the prediction of ventilator pressure. Based on the dataset provided by Google Brain in a Kaggle competition, we connect the Transformer encoders by residual connections to extract features from the time-series ventilator data, and successfully achieve the goal to predict the ventilator pressure with excellent performance. After applying the K-Fold cross validation technique, our Transformer-based model reaches a mean absolute error 0.1311 on the private test set. This result ranks 67/2605 (top 2.6%) in the leaderboard of Google Brain - Ventilator Pressure Prediction competition, and can get a silver medal in this Kaggle competition. This work could accelerate the development of new methods to overcome the cost barrier of ventilator control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信