{"title":"二阶和依赖排序的抽象语法","authors":"M. Fiore","doi":"10.1109/LICS.2008.38","DOIUrl":null,"url":null,"abstract":"The paper develops a mathematical theory in the spirit of categorical algebra that provides a model theory for second-order and dependently-sorted syntax. The theory embodies notions such as alpha-equivalence, variable binding, capture-avoiding simultaneous substitution, term metavariable, meta-substitution, mono and multi sorting, and sort dependency. As a matter of illustration, a model is used to extract a second-order syntactic theory, which is thus guaranteed to be correct by construction.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Second-Order and Dependently-Sorted Abstract Syntax\",\"authors\":\"M. Fiore\",\"doi\":\"10.1109/LICS.2008.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops a mathematical theory in the spirit of categorical algebra that provides a model theory for second-order and dependently-sorted syntax. The theory embodies notions such as alpha-equivalence, variable binding, capture-avoiding simultaneous substitution, term metavariable, meta-substitution, mono and multi sorting, and sort dependency. As a matter of illustration, a model is used to extract a second-order syntactic theory, which is thus guaranteed to be correct by construction.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-Order and Dependently-Sorted Abstract Syntax
The paper develops a mathematical theory in the spirit of categorical algebra that provides a model theory for second-order and dependently-sorted syntax. The theory embodies notions such as alpha-equivalence, variable binding, capture-avoiding simultaneous substitution, term metavariable, meta-substitution, mono and multi sorting, and sort dependency. As a matter of illustration, a model is used to extract a second-order syntactic theory, which is thus guaranteed to be correct by construction.