基于跟踪特征量化的视频检索

Hiroaki Kubo, Julien Pilet, H. Saito, S. Satoh
{"title":"基于跟踪特征量化的视频检索","authors":"Hiroaki Kubo, Julien Pilet, H. Saito, S. Satoh","doi":"10.1109/ICPR.2010.794","DOIUrl":null,"url":null,"abstract":"In this paper, we present an image retrieval method based on feature tracking. Feature tracks are summarized into a compact discreet value and used for video indexing purpose. As opposed to existing space-time features, we do not make any assumption on the motion visible on the indexed videos. As a result, given an example query, our system is able to retrieve related videos from a large database. We evaluated our system with the copy detection benchmark MUSCLE-VCD-2007. We also ran retrieval experiment on hours of TV broadcast.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Retrieval Based on Tracked Features Quantization\",\"authors\":\"Hiroaki Kubo, Julien Pilet, H. Saito, S. Satoh\",\"doi\":\"10.1109/ICPR.2010.794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an image retrieval method based on feature tracking. Feature tracks are summarized into a compact discreet value and used for video indexing purpose. As opposed to existing space-time features, we do not make any assumption on the motion visible on the indexed videos. As a result, given an example query, our system is able to retrieve related videos from a large database. We evaluated our system with the copy detection benchmark MUSCLE-VCD-2007. We also ran retrieval experiment on hours of TV broadcast.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于特征跟踪的图像检索方法。特征轨道被总结成一个紧凑的离散值,并用于视频索引目的。与现有的时空特征相反,我们对索引视频中可见的运动不做任何假设。因此,给定一个示例查询,我们的系统能够从大型数据库中检索相关视频。我们用复制检测基准MUSCLE-VCD-2007评估了我们的系统。我们还对电视节目播放时间进行了检索实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Retrieval Based on Tracked Features Quantization
In this paper, we present an image retrieval method based on feature tracking. Feature tracks are summarized into a compact discreet value and used for video indexing purpose. As opposed to existing space-time features, we do not make any assumption on the motion visible on the indexed videos. As a result, given an example query, our system is able to retrieve related videos from a large database. We evaluated our system with the copy detection benchmark MUSCLE-VCD-2007. We also ran retrieval experiment on hours of TV broadcast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信