{"title":"三维Navier-Stokes方程弱解的长度尺度层次","authors":"J. Gibbon","doi":"10.4310/CMS.2012.V10.N1.A7","DOIUrl":null,"url":null,"abstract":"Moments of the vorticity are used to define and estimate a hierarchy of time-averaged inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equations on a periodic box. The estimate for the smallest of these inverse scales coincides with the inverse Kolmogorov length but thereafter the exponents of the Reynolds number rise rapidly for correspondingly higher moments. The implications of these results for the computational resolution of small scale vortical structures are discussed.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A hierarchy of length scales for weak solutions of the three-dimensional Navier-Stokes equations\",\"authors\":\"J. Gibbon\",\"doi\":\"10.4310/CMS.2012.V10.N1.A7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moments of the vorticity are used to define and estimate a hierarchy of time-averaged inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equations on a periodic box. The estimate for the smallest of these inverse scales coincides with the inverse Kolmogorov length but thereafter the exponents of the Reynolds number rise rapidly for correspondingly higher moments. The implications of these results for the computational resolution of small scale vortical structures are discussed.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CMS.2012.V10.N1.A7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2012.V10.N1.A7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hierarchy of length scales for weak solutions of the three-dimensional Navier-Stokes equations
Moments of the vorticity are used to define and estimate a hierarchy of time-averaged inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equations on a periodic box. The estimate for the smallest of these inverse scales coincides with the inverse Kolmogorov length but thereafter the exponents of the Reynolds number rise rapidly for correspondingly higher moments. The implications of these results for the computational resolution of small scale vortical structures are discussed.