基于Fredholm表示的高斯过程随机分析

T. Sottinen, L. Viitasaari
{"title":"基于Fredholm表示的高斯过程随机分析","authors":"T. Sottinen, L. Viitasaari","doi":"10.1155/2016/8694365","DOIUrl":null,"url":null,"abstract":"We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"20 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Stochastic Analysis of Gaussian Processes via Fredholm Representation\",\"authors\":\"T. Sottinen, L. Viitasaari\",\"doi\":\"10.1155/2016/8694365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"20 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/8694365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/8694365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们证明了每一个具有可积方差函数的可分离高斯过程都允许一个关于布朗运动的Fredholm表示。我们将Fredholm表示推广到传递原理,并利用它发展了随机分析。我们通过给出等价律、桥、级数展开式、随机微分方程和极大似然估计的应用来证明Fredholm表示法的便利性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Analysis of Gaussian Processes via Fredholm Representation
We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信