{"title":"区间值数据的抵抗回归","authors":"Jobson Renan, J. Silva, S. Galdino","doi":"10.1109/BRICS-CCI-CBIC.2013.52","DOIUrl":null,"url":null,"abstract":"This paper introduces two new approaches to fit univariate resistant linear regression models on interval-valued data. Linear regressions on interval-valued data gives point predictions. The prediction of the lower and upper bounds from interval-valued data of dependent variable are estimated from the fitted range resistant linear regression model. The new proposed methods should be used in presence of outliers.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistant Regression for Interval-Valued Data\",\"authors\":\"Jobson Renan, J. Silva, S. Galdino\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces two new approaches to fit univariate resistant linear regression models on interval-valued data. Linear regressions on interval-valued data gives point predictions. The prediction of the lower and upper bounds from interval-valued data of dependent variable are estimated from the fitted range resistant linear regression model. The new proposed methods should be used in presence of outliers.\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper introduces two new approaches to fit univariate resistant linear regression models on interval-valued data. Linear regressions on interval-valued data gives point predictions. The prediction of the lower and upper bounds from interval-valued data of dependent variable are estimated from the fitted range resistant linear regression model. The new proposed methods should be used in presence of outliers.