基于小波的体积数据平滑度度量

Mong-shu Lee, S. Ueng, Jhih-Jhong Lin
{"title":"基于小波的体积数据平滑度度量","authors":"Mong-shu Lee, S. Ueng, Jhih-Jhong Lin","doi":"10.1109/CGIV.2013.20","DOIUrl":null,"url":null,"abstract":"In this paper we describe an objective smoothness assessment method for volume data. The metric can predict the extent of the difference in smoothness between a reference model, which may not be of perfect quality, and a distorted version. The proposed metric is based on the wavelet characterization of Besov function spaces. The comparison of Besov norm between two models can resolve the global and local differences in smoothness between them. Experimental results from volume datasets with smoothing and sharpening operations demonstrate its effectiveness. Also, the proposed smoothness index correlates well with human perceived vision when compared with direct volume rendered images.","PeriodicalId":342914,"journal":{"name":"2013 10th International Conference Computer Graphics, Imaging and Visualization","volume":"77 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wavelets-Based Smoothness Metric for Volume Data\",\"authors\":\"Mong-shu Lee, S. Ueng, Jhih-Jhong Lin\",\"doi\":\"10.1109/CGIV.2013.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe an objective smoothness assessment method for volume data. The metric can predict the extent of the difference in smoothness between a reference model, which may not be of perfect quality, and a distorted version. The proposed metric is based on the wavelet characterization of Besov function spaces. The comparison of Besov norm between two models can resolve the global and local differences in smoothness between them. Experimental results from volume datasets with smoothing and sharpening operations demonstrate its effectiveness. Also, the proposed smoothness index correlates well with human perceived vision when compared with direct volume rendered images.\",\"PeriodicalId\":342914,\"journal\":{\"name\":\"2013 10th International Conference Computer Graphics, Imaging and Visualization\",\"volume\":\"77 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference Computer Graphics, Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2013.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference Computer Graphics, Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种体数据平滑度的客观评价方法。该度量可以预测参考模型(可能不具有完美质量)和扭曲版本之间平滑度差异的程度。该度量基于Besov函数空间的小波表征。两个模型之间的Besov范数比较可以解决全局和局部平滑度的差异。在体数据集上进行平滑和锐化操作的实验结果证明了该方法的有效性。此外,与直接体渲染图像相比,所提出的平滑指数与人类感知视觉具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelets-Based Smoothness Metric for Volume Data
In this paper we describe an objective smoothness assessment method for volume data. The metric can predict the extent of the difference in smoothness between a reference model, which may not be of perfect quality, and a distorted version. The proposed metric is based on the wavelet characterization of Besov function spaces. The comparison of Besov norm between two models can resolve the global and local differences in smoothness between them. Experimental results from volume datasets with smoothing and sharpening operations demonstrate its effectiveness. Also, the proposed smoothness index correlates well with human perceived vision when compared with direct volume rendered images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信