{"title":"关于传递李代数群的积分","authors":"E. Meinrenken","doi":"10.4171/lem/1015","DOIUrl":null,"url":null,"abstract":"We revisit the problem of integrating Lie algebroids $A\\Rightarrow M$ to Lie groupoids $G\\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the integration of transitive Lie algebroids\",\"authors\":\"E. Meinrenken\",\"doi\":\"10.4171/lem/1015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the problem of integrating Lie algebroids $A\\\\Rightarrow M$ to Lie groupoids $G\\\\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We revisit the problem of integrating Lie algebroids $A\Rightarrow M$ to Lie groupoids $G\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.