关于传递李代数群的积分

E. Meinrenken
{"title":"关于传递李代数群的积分","authors":"E. Meinrenken","doi":"10.4171/lem/1015","DOIUrl":null,"url":null,"abstract":"We revisit the problem of integrating Lie algebroids $A\\Rightarrow M$ to Lie groupoids $G\\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the integration of transitive Lie algebroids\",\"authors\":\"E. Meinrenken\",\"doi\":\"10.4171/lem/1015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the problem of integrating Lie algebroids $A\\\\Rightarrow M$ to Lie groupoids $G\\\\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于李代数群A$可传递的特殊情况,我们重新研究了李代数群$A\ rightarrows M$与李群$G\ rightarrows M$的积分问题。在这种情况下,我们得到了craini - fernandes障碍的几何解释,以及当这些障碍消失时积分的显式构造。我们还指出了这种方法在正则李代数上的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the integration of transitive Lie algebroids
We revisit the problem of integrating Lie algebroids $A\Rightarrow M$ to Lie groupoids $G\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信