{"title":"基于信息论的随机块模型中KS阈值的跨越","authors":"E. Abbe, Colin Sandon","doi":"10.1109/ISIT.2016.7541417","DOIUrl":null,"url":null,"abstract":"Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Crossing the KS threshold in the stochastic block model with information theory\",\"authors\":\"E. Abbe, Colin Sandon\",\"doi\":\"10.1109/ISIT.2016.7541417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crossing the KS threshold in the stochastic block model with information theory
Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).