基于信息论的随机块模型中KS阈值的跨越

E. Abbe, Colin Sandon
{"title":"基于信息论的随机块模型中KS阈值的跨越","authors":"E. Abbe, Colin Sandon","doi":"10.1109/ISIT.2016.7541417","DOIUrl":null,"url":null,"abstract":"Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Crossing the KS threshold in the stochastic block model with information theory\",\"authors\":\"E. Abbe, Colin Sandon\",\"doi\":\"10.1109/ISIT.2016.7541417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

Decelle等人推测,对称随机块模型中的社区检测具有一个计算阈值,即所谓的Kesten-Stigum (KS)阈值,并且信息论方法可以在足够多的社区(4或5取决于参数的制度)中超过该阈值。本文表明,在k = 5时,可以使用非高效算法对具有典型聚类体积的聚类进行采样,从而在非分类状态下跨越KS阈值。此外,在某些情况下,KS和信息理论阈值之间的差距很大。在这种情况下,仅在平均度为b的簇上绘制边,并用k表示群落的数量,KS阈值读取b约k2,而我们的信息论边界读取b约k ln(k)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crossing the KS threshold in the stochastic block model with information theory
Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信