L. Chrpa, Pavel Rytír, Andrii Nyporko, Rostislav Horcík, S. Edelkamp
{"title":"基于任务分解的资源竞争问题有效规划","authors":"L. Chrpa, Pavel Rytír, Andrii Nyporko, Rostislav Horcík, S. Edelkamp","doi":"10.1609/socs.v15i1.21751","DOIUrl":null,"url":null,"abstract":"Effective planning while competing for limited resources is crucial in many real-world applications such as on-demand transport companies competing for passengers. Planning techniques therefore have to take into account possible actions of an adversarial agent. Such a challenge that can be tackled by leveraging game-theoretical methods such as Double Oracle. \n\nThis paper aims at the scalability issues arising from combining planning techniques with Double Oracle. In particular, we propose an abstraction-based heuristic for deciding how resources will be collected (e.g. which car goes for which passenger and in which order) and we propose a method for decomposing planning tasks into smaller ones (e.g. generate plans for each car separately). Our empirical evaluation shows that our proposed approach considerably improves scalability compared to the state-of-the-art techniques.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Planning in Resource-Competition Problems by Task Decomposition\",\"authors\":\"L. Chrpa, Pavel Rytír, Andrii Nyporko, Rostislav Horcík, S. Edelkamp\",\"doi\":\"10.1609/socs.v15i1.21751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective planning while competing for limited resources is crucial in many real-world applications such as on-demand transport companies competing for passengers. Planning techniques therefore have to take into account possible actions of an adversarial agent. Such a challenge that can be tackled by leveraging game-theoretical methods such as Double Oracle. \\n\\nThis paper aims at the scalability issues arising from combining planning techniques with Double Oracle. In particular, we propose an abstraction-based heuristic for deciding how resources will be collected (e.g. which car goes for which passenger and in which order) and we propose a method for decomposing planning tasks into smaller ones (e.g. generate plans for each car separately). Our empirical evaluation shows that our proposed approach considerably improves scalability compared to the state-of-the-art techniques.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v15i1.21751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v15i1.21751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective Planning in Resource-Competition Problems by Task Decomposition
Effective planning while competing for limited resources is crucial in many real-world applications such as on-demand transport companies competing for passengers. Planning techniques therefore have to take into account possible actions of an adversarial agent. Such a challenge that can be tackled by leveraging game-theoretical methods such as Double Oracle.
This paper aims at the scalability issues arising from combining planning techniques with Double Oracle. In particular, we propose an abstraction-based heuristic for deciding how resources will be collected (e.g. which car goes for which passenger and in which order) and we propose a method for decomposing planning tasks into smaller ones (e.g. generate plans for each car separately). Our empirical evaluation shows that our proposed approach considerably improves scalability compared to the state-of-the-art techniques.