结合奇异值分解的基于用户的协同过滤技术在电影推荐系统中的比较研究

Vito Xituo Chen, T. Tang
{"title":"结合奇异值分解的基于用户的协同过滤技术在电影推荐系统中的比较研究","authors":"Vito Xituo Chen, T. Tang","doi":"10.1145/3357777.3357782","DOIUrl":null,"url":null,"abstract":"User-based collaborative filtering (UCF) technique is typically used to build a recommendation system (RS). A wide variety of techniques, such as matrix factorization, cosine similarity and Pearson correlation, have been proposed to improve the performance of the UCF algorithm in order to build more intelligent RSs. In this paper, we first describe the traditional UCF algorithm as the baseline; then we apply various techniques including singular value decomposition (SVD), cosine similarity, and Pearson correlation to examine and compare the performance of a small- scale movie RS. Our preliminary experimental results show that the UCF which used SVD and Pearson correlation performs better than a traditional UCF.","PeriodicalId":127005,"journal":{"name":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Incorporating Singular Value Decomposition in User-based Collaborative Filtering Technique for a Movie Recommendation System: A Comparative Study\",\"authors\":\"Vito Xituo Chen, T. Tang\",\"doi\":\"10.1145/3357777.3357782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User-based collaborative filtering (UCF) technique is typically used to build a recommendation system (RS). A wide variety of techniques, such as matrix factorization, cosine similarity and Pearson correlation, have been proposed to improve the performance of the UCF algorithm in order to build more intelligent RSs. In this paper, we first describe the traditional UCF algorithm as the baseline; then we apply various techniques including singular value decomposition (SVD), cosine similarity, and Pearson correlation to examine and compare the performance of a small- scale movie RS. Our preliminary experimental results show that the UCF which used SVD and Pearson correlation performs better than a traditional UCF.\",\"PeriodicalId\":127005,\"journal\":{\"name\":\"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357777.3357782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 the International Conference on Pattern Recognition and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357777.3357782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于用户的协同过滤(UCF)技术通常用于构建推荐系统。各种各样的技术,如矩阵分解,余弦相似度和Pearson相关,已被提出,以提高UCF算法的性能,以建立更智能的RSs。本文首先将传统的UCF算法描述为基线;然后应用奇异值分解(SVD)、余弦相似度(cos similarity)和Pearson相关性(Pearson correlation)等多种技术对小尺度电影RS的性能进行了检验和比较。初步实验结果表明,使用奇异值分解和Pearson相关性的UCF比传统的UCF性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Singular Value Decomposition in User-based Collaborative Filtering Technique for a Movie Recommendation System: A Comparative Study
User-based collaborative filtering (UCF) technique is typically used to build a recommendation system (RS). A wide variety of techniques, such as matrix factorization, cosine similarity and Pearson correlation, have been proposed to improve the performance of the UCF algorithm in order to build more intelligent RSs. In this paper, we first describe the traditional UCF algorithm as the baseline; then we apply various techniques including singular value decomposition (SVD), cosine similarity, and Pearson correlation to examine and compare the performance of a small- scale movie RS. Our preliminary experimental results show that the UCF which used SVD and Pearson correlation performs better than a traditional UCF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信