数学模型的鲁棒性与技术分析策略

Ahmed Bel Hadj Ayed, G. Loeper, F. Abergel
{"title":"数学模型的鲁棒性与技术分析策略","authors":"Ahmed Bel Hadj Ayed, G. Loeper, F. Abergel","doi":"10.2139/SSRN.2774061","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to compare the performances of the optimal strategy under parameters mis-specification and of a technical analysis trading strategy. The setting we consider is that of a stochastic asset price model where the trend follows an unobservable Ornstein-Uhlenbeck process. For both strategies, we provide the asymptotic expectation of the logarithmic return as a function of the model parameters. Finally, numerical examples find that an investment strategy using the cross moving averages rule is more robust than the optimal strategy under parameters mis-specification.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of Mathematical Models and Technical Analysis Strategies\",\"authors\":\"Ahmed Bel Hadj Ayed, G. Loeper, F. Abergel\",\"doi\":\"10.2139/SSRN.2774061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to compare the performances of the optimal strategy under parameters mis-specification and of a technical analysis trading strategy. The setting we consider is that of a stochastic asset price model where the trend follows an unobservable Ornstein-Uhlenbeck process. For both strategies, we provide the asymptotic expectation of the logarithmic return as a function of the model parameters. Finally, numerical examples find that an investment strategy using the cross moving averages rule is more robust than the optimal strategy under parameters mis-specification.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2774061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2774061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是比较参数不规范情况下的最优策略和技术分析交易策略的性能。我们考虑的设置是一个随机资产价格模型,其趋势遵循不可观察的Ornstein-Uhlenbeck过程。对于这两种策略,我们提供了对数回报的渐近期望作为模型参数的函数。最后,数值算例表明,采用交叉移动平均规则的投资策略比参数不规范情况下的最优投资策略具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of Mathematical Models and Technical Analysis Strategies
The aim of this paper is to compare the performances of the optimal strategy under parameters mis-specification and of a technical analysis trading strategy. The setting we consider is that of a stochastic asset price model where the trend follows an unobservable Ornstein-Uhlenbeck process. For both strategies, we provide the asymptotic expectation of the logarithmic return as a function of the model parameters. Finally, numerical examples find that an investment strategy using the cross moving averages rule is more robust than the optimal strategy under parameters mis-specification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信