基于血管网络提取的红外人脸图像分类

Pinki Paul, Mousumi Sarkar, P. Saha, M. Bhowmik
{"title":"基于血管网络提取的红外人脸图像分类","authors":"Pinki Paul, Mousumi Sarkar, P. Saha, M. Bhowmik","doi":"10.1109/INDICON.2016.7838918","DOIUrl":null,"url":null,"abstract":"Vascular networks in infrared faces are created due to the blood flow under the skin. Variations in blood flow in the blood vessels cause temperature difference, which produces the vascular networks. This paper deals with binary classification of various infrared facial expressions using vascular network. The classification has been performed using Support Vector Machine classifier on five types of expression where facial features are extracted with the help of Uniform LBP and PCA. Experiments have been conducted on two infrared face datasets: one is our own captured dataset and another is USTC_NVIE database. Experiment results reveal that uniform LBP generate more accuracy than PCA and maximum accuracy is obtained using our own dataset.","PeriodicalId":283953,"journal":{"name":"2016 IEEE Annual India Conference (INDICON)","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of IR expressive face images from extracted vascular network\",\"authors\":\"Pinki Paul, Mousumi Sarkar, P. Saha, M. Bhowmik\",\"doi\":\"10.1109/INDICON.2016.7838918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular networks in infrared faces are created due to the blood flow under the skin. Variations in blood flow in the blood vessels cause temperature difference, which produces the vascular networks. This paper deals with binary classification of various infrared facial expressions using vascular network. The classification has been performed using Support Vector Machine classifier on five types of expression where facial features are extracted with the help of Uniform LBP and PCA. Experiments have been conducted on two infrared face datasets: one is our own captured dataset and another is USTC_NVIE database. Experiment results reveal that uniform LBP generate more accuracy than PCA and maximum accuracy is obtained using our own dataset.\",\"PeriodicalId\":283953,\"journal\":{\"name\":\"2016 IEEE Annual India Conference (INDICON)\",\"volume\":\"270 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Annual India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2016.7838918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Annual India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2016.7838918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红外线面部的血管网络是由于皮肤下的血液流动而形成的。血管中血流的变化引起温差,从而产生血管网。本文研究了利用血管网络对各种红外面部表情进行二值分类的方法。使用支持向量机分类器对五种类型的表情进行分类,其中面部特征在均匀LBP和主成分分析的帮助下提取。在两个红外人脸数据集上进行了实验,一个是我们自己捕获的数据集,另一个是USTC_NVIE数据库。实验结果表明,均匀LBP比主成分分析产生更高的准确率,并且在我们自己的数据集上获得了最大的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of IR expressive face images from extracted vascular network
Vascular networks in infrared faces are created due to the blood flow under the skin. Variations in blood flow in the blood vessels cause temperature difference, which produces the vascular networks. This paper deals with binary classification of various infrared facial expressions using vascular network. The classification has been performed using Support Vector Machine classifier on five types of expression where facial features are extracted with the help of Uniform LBP and PCA. Experiments have been conducted on two infrared face datasets: one is our own captured dataset and another is USTC_NVIE database. Experiment results reveal that uniform LBP generate more accuracy than PCA and maximum accuracy is obtained using our own dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信