时间序列的多分辨率符号表示

V. Megalooikonomou, Qiang Wang, Guo Li, C. Faloutsos
{"title":"时间序列的多分辨率符号表示","authors":"V. Megalooikonomou, Qiang Wang, Guo Li, C. Faloutsos","doi":"10.1109/ICDE.2005.10","DOIUrl":null,"url":null,"abstract":"Efficiently and accurately searching for similarities among time series and discovering interesting patterns is an important and non-trivial problem. In this paper, we introduce a new representation of time series, the multiresolution vector quantized (MVQ) approximation, along with a new distance function. The novelty of MVQ is that it keeps both local and global information about the original time series in a hierarchical mechanism, processing the original time series at multiple resolutions. Moreover, the proposed representation is symbolic employing key subsequences and potentially allows the application of text-based retrieval techniques into the similarity analysis of time series. The proposed method is fast and scales linearly with the size of database and the dimensionality. Contrary to the vast majority in the literature that uses the Euclidean distance, MVQ uses a multi-resolution/hierarchical distance function. We performed experiments with real and synthetic data. The proposed distance function consistently outperforms all the major competitors (Euclidean, dynamic time warping, piecewise aggregate approximation) achieving up to 20% better precision/recall and clustering accuracy on the tested datasets.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"A multiresolution symbolic representation of time series\",\"authors\":\"V. Megalooikonomou, Qiang Wang, Guo Li, C. Faloutsos\",\"doi\":\"10.1109/ICDE.2005.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently and accurately searching for similarities among time series and discovering interesting patterns is an important and non-trivial problem. In this paper, we introduce a new representation of time series, the multiresolution vector quantized (MVQ) approximation, along with a new distance function. The novelty of MVQ is that it keeps both local and global information about the original time series in a hierarchical mechanism, processing the original time series at multiple resolutions. Moreover, the proposed representation is symbolic employing key subsequences and potentially allows the application of text-based retrieval techniques into the similarity analysis of time series. The proposed method is fast and scales linearly with the size of database and the dimensionality. Contrary to the vast majority in the literature that uses the Euclidean distance, MVQ uses a multi-resolution/hierarchical distance function. We performed experiments with real and synthetic data. The proposed distance function consistently outperforms all the major competitors (Euclidean, dynamic time warping, piecewise aggregate approximation) achieving up to 20% better precision/recall and clustering accuracy on the tested datasets.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

高效、准确地搜索时间序列之间的相似性并发现有趣的模式是一个重要而重要的问题。在本文中,我们引入了一种新的时间序列表示,即多分辨率矢量量化(MVQ)近似,以及一个新的距离函数。MVQ的新颖之处在于,它将原始时间序列的局部和全局信息保持在分层机制中,以多种分辨率处理原始时间序列。此外,所提出的表示是采用关键子序列的符号表示,并且可能允许将基于文本的检索技术应用于时间序列的相似性分析。该方法速度快,且随数据库大小和维数呈线性扩展。与绝大多数使用欧几里得距离的文献相反,MVQ使用多分辨率/分层距离函数。我们用真实数据和合成数据进行了实验。所提出的距离函数始终优于所有主要的竞争对手(欧几里得,动态时间翘曲,分段聚合近似),在测试数据集上实现高达20%的精度/召回率和聚类精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiresolution symbolic representation of time series
Efficiently and accurately searching for similarities among time series and discovering interesting patterns is an important and non-trivial problem. In this paper, we introduce a new representation of time series, the multiresolution vector quantized (MVQ) approximation, along with a new distance function. The novelty of MVQ is that it keeps both local and global information about the original time series in a hierarchical mechanism, processing the original time series at multiple resolutions. Moreover, the proposed representation is symbolic employing key subsequences and potentially allows the application of text-based retrieval techniques into the similarity analysis of time series. The proposed method is fast and scales linearly with the size of database and the dimensionality. Contrary to the vast majority in the literature that uses the Euclidean distance, MVQ uses a multi-resolution/hierarchical distance function. We performed experiments with real and synthetic data. The proposed distance function consistently outperforms all the major competitors (Euclidean, dynamic time warping, piecewise aggregate approximation) achieving up to 20% better precision/recall and clustering accuracy on the tested datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信