{"title":"ERAsim:一个灵活的基于python的架构建模和仿真框架","authors":"Saud Wasly","doi":"10.1109/ICIAS49414.2021.9642593","DOIUrl":null,"url":null,"abstract":"Full-System simulators remain essential tools to quickly design and test novel architectural ideas. This work introduces a system-level hardware modeling and simulation framework with an emphasis on ease of use. It is entirely based on Python to improve developer productivity. At the same time, meta-tracing JIT compilation techniques are used to improve simulation speed without losing timing accuracy. The proposed framework supports modeling components ranging from cycle-accurate to purely functional. The simulation engine combines time-driven simulation with transaction-level modeling to allow for precise timing estimates without compromising simulation speed. The engine also supports multi-threaded execution for multi-master systems.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERAsim: A Flexible Python-based Architectural Modeling and Simulation Framework\",\"authors\":\"Saud Wasly\",\"doi\":\"10.1109/ICIAS49414.2021.9642593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full-System simulators remain essential tools to quickly design and test novel architectural ideas. This work introduces a system-level hardware modeling and simulation framework with an emphasis on ease of use. It is entirely based on Python to improve developer productivity. At the same time, meta-tracing JIT compilation techniques are used to improve simulation speed without losing timing accuracy. The proposed framework supports modeling components ranging from cycle-accurate to purely functional. The simulation engine combines time-driven simulation with transaction-level modeling to allow for precise timing estimates without compromising simulation speed. The engine also supports multi-threaded execution for multi-master systems.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ERAsim: A Flexible Python-based Architectural Modeling and Simulation Framework
Full-System simulators remain essential tools to quickly design and test novel architectural ideas. This work introduces a system-level hardware modeling and simulation framework with an emphasis on ease of use. It is entirely based on Python to improve developer productivity. At the same time, meta-tracing JIT compilation techniques are used to improve simulation speed without losing timing accuracy. The proposed framework supports modeling components ranging from cycle-accurate to purely functional. The simulation engine combines time-driven simulation with transaction-level modeling to allow for precise timing estimates without compromising simulation speed. The engine also supports multi-threaded execution for multi-master systems.