基于范例的短时间语音片段语言识别方法

Meng-Ge Wang, Yan Song, B. Jiang, Lirong Dai, I. Mcloughlin
{"title":"基于范例的短时间语音片段语言识别方法","authors":"Meng-Ge Wang, Yan Song, B. Jiang, Lirong Dai, I. Mcloughlin","doi":"10.1109/ICASSP.2013.6639091","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel exemplar-based language recognition method for short duration speech segments. It is known that language identity is a kind of weak information that can be deduced from the speech content. For short duration speech segments, the limited content also leads to a large intra-language variability. To address this issue, we propose a new method. This borrows a vector quantization based representation from image classification methods, and constructs the exemplar space using the popular i-vector representation of short duration speech segments. A mapping function is then defined to build the new representation. To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the NIST LRE2007 dataset. The experimental results demonstrate improved performance for short duration speech segments.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exemplar based language recognition method for short-duration speech segments\",\"authors\":\"Meng-Ge Wang, Yan Song, B. Jiang, Lirong Dai, I. Mcloughlin\",\"doi\":\"10.1109/ICASSP.2013.6639091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel exemplar-based language recognition method for short duration speech segments. It is known that language identity is a kind of weak information that can be deduced from the speech content. For short duration speech segments, the limited content also leads to a large intra-language variability. To address this issue, we propose a new method. This borrows a vector quantization based representation from image classification methods, and constructs the exemplar space using the popular i-vector representation of short duration speech segments. A mapping function is then defined to build the new representation. To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the NIST LRE2007 dataset. The experimental results demonstrate improved performance for short duration speech segments.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6639091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6639091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于实例的短时语音片段语言识别方法。语言认同是一种弱信息,可以从言语内容中推断出来。对于持续时间较短的语音片段,有限的内容也导致了很大的语内变异性。为了解决这个问题,我们提出了一个新的方法。该方法从图像分类方法中借鉴了基于向量量化的表示,并使用流行的短持续时间语音片段的i向量表示来构建样例空间。然后定义一个映射函数来构建新的表示。为了评估我们提出的方法的有效性,我们在NIST LRE2007数据集上进行了大量的实验。实验结果表明,该算法对短时间语音片段的处理性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exemplar based language recognition method for short-duration speech segments
This paper proposes a novel exemplar-based language recognition method for short duration speech segments. It is known that language identity is a kind of weak information that can be deduced from the speech content. For short duration speech segments, the limited content also leads to a large intra-language variability. To address this issue, we propose a new method. This borrows a vector quantization based representation from image classification methods, and constructs the exemplar space using the popular i-vector representation of short duration speech segments. A mapping function is then defined to build the new representation. To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the NIST LRE2007 dataset. The experimental results demonstrate improved performance for short duration speech segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信