Beza Lamesgin Derseh, Y. G. Wondifraw, Berhanu Assaye Alaba
{"title":"关于PMS代数的t-直觉模糊PMS子代数","authors":"Beza Lamesgin Derseh, Y. G. Wondifraw, Berhanu Assaye Alaba","doi":"10.4018/ijfsa.317103","DOIUrl":null,"url":null,"abstract":"In this paper, the authors extend the concept of a t-intuitionistic fuzzy set to PMS-subalgebras of PMS-algebras. The authors define the t-intuitionistic fuzzy PMS-subalgebra of a PMS-algebra and show that any intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is a t-intuitionistic fuzzy PMS-subalgebra. The authors provide the condition for an intuitionistic fuzzy set in a PMS-algebra to be a t-intuitionistic fuzzy PMS-subalgebra. The authors use their (α,β) level cuts to characterize the t-intuitionistic fuzzy PMS-subalgebras of PMS-algebra. The authors investigate whether the homomorphic images and inverse images of t-intuitionistic fuzzy PMS-subalgebras are also t-intuitionistic fuzzy PMS-subalgebras. Furthermore, the authors show that the homomorphic images and inverse images of the nonempty (α,β) level cuts of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra are again PMS-subalgebras of a PMS-algebra. Finally, the authors show that the Cartesian product of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra is itself a t-intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its (α,β) level cuts.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On t-Intuitionistic Fuzzy PMS-Subalgebras of a PMS Algebra\",\"authors\":\"Beza Lamesgin Derseh, Y. G. Wondifraw, Berhanu Assaye Alaba\",\"doi\":\"10.4018/ijfsa.317103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors extend the concept of a t-intuitionistic fuzzy set to PMS-subalgebras of PMS-algebras. The authors define the t-intuitionistic fuzzy PMS-subalgebra of a PMS-algebra and show that any intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is a t-intuitionistic fuzzy PMS-subalgebra. The authors provide the condition for an intuitionistic fuzzy set in a PMS-algebra to be a t-intuitionistic fuzzy PMS-subalgebra. The authors use their (α,β) level cuts to characterize the t-intuitionistic fuzzy PMS-subalgebras of PMS-algebra. The authors investigate whether the homomorphic images and inverse images of t-intuitionistic fuzzy PMS-subalgebras are also t-intuitionistic fuzzy PMS-subalgebras. Furthermore, the authors show that the homomorphic images and inverse images of the nonempty (α,β) level cuts of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra are again PMS-subalgebras of a PMS-algebra. Finally, the authors show that the Cartesian product of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra is itself a t-intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its (α,β) level cuts.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.317103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.317103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On t-Intuitionistic Fuzzy PMS-Subalgebras of a PMS Algebra
In this paper, the authors extend the concept of a t-intuitionistic fuzzy set to PMS-subalgebras of PMS-algebras. The authors define the t-intuitionistic fuzzy PMS-subalgebra of a PMS-algebra and show that any intuitionistic fuzzy PMS-subalgebra of a PMS-algebra is a t-intuitionistic fuzzy PMS-subalgebra. The authors provide the condition for an intuitionistic fuzzy set in a PMS-algebra to be a t-intuitionistic fuzzy PMS-subalgebra. The authors use their (α,β) level cuts to characterize the t-intuitionistic fuzzy PMS-subalgebras of PMS-algebra. The authors investigate whether the homomorphic images and inverse images of t-intuitionistic fuzzy PMS-subalgebras are also t-intuitionistic fuzzy PMS-subalgebras. Furthermore, the authors show that the homomorphic images and inverse images of the nonempty (α,β) level cuts of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra are again PMS-subalgebras of a PMS-algebra. Finally, the authors show that the Cartesian product of the t-intuitionistic fuzzy PMS-subalgebras of a PMS-algebra is itself a t-intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its (α,β) level cuts.