{"title":"连续取消列表解码的列表大小的界限","authors":"M. C. Coşkun, H. Pfister","doi":"10.1109/SPCOM50965.2020.9179593","DOIUrl":null,"url":null,"abstract":"Successive cancellation list decoding of polar codes provides very good performance for short to moderate block lengths. However, the list size required to approach the performance of maximum-likelihood decoding is still not well understood theoretically. This work identifies information-theoretic quantities that are closely related to this required list size. It also provides a natural approximation for these quantities that can be computed efficiently even for very long codes. Simulation results are provided for the binary erasure channel as well as the binary-input additive white Gaussian noise channel.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bounds on the List Size of Successive Cancellation List Decoding\",\"authors\":\"M. C. Coşkun, H. Pfister\",\"doi\":\"10.1109/SPCOM50965.2020.9179593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successive cancellation list decoding of polar codes provides very good performance for short to moderate block lengths. However, the list size required to approach the performance of maximum-likelihood decoding is still not well understood theoretically. This work identifies information-theoretic quantities that are closely related to this required list size. It also provides a natural approximation for these quantities that can be computed efficiently even for very long codes. Simulation results are provided for the binary erasure channel as well as the binary-input additive white Gaussian noise channel.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bounds on the List Size of Successive Cancellation List Decoding
Successive cancellation list decoding of polar codes provides very good performance for short to moderate block lengths. However, the list size required to approach the performance of maximum-likelihood decoding is still not well understood theoretically. This work identifies information-theoretic quantities that are closely related to this required list size. It also provides a natural approximation for these quantities that can be computed efficiently even for very long codes. Simulation results are provided for the binary erasure channel as well as the binary-input additive white Gaussian noise channel.