电动母线用超级电容器堆的电热尺寸:键合图方法

A. Hijazi, E. Bideaux, P. Venet, G. Clerc
{"title":"电动母线用超级电容器堆的电热尺寸:键合图方法","authors":"A. Hijazi, E. Bideaux, P. Venet, G. Clerc","doi":"10.1109/EVER.2015.7112988","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of electro-thermal sizing of supercapacitors stack. The application concern the alimentation of trolleybus in case of electrical microcuts that frequently occurs during circulation of the trolleybus. The goal is to size the number of supercapacitor to be implemented knowing the speed and acceleration profile of the trolleybus and to discuss about the thermal performance of the obtained stack. Based on bond graph approach, direct and inverse model of the kinematic chain of trolleybus is developed in order to deduce the consumption of an electrical bus and the braking energy in relation with the speed profile. Validation of direct model has been carried out with experimental results. Then, based on the Ragone plot of supercapacitors, we study the number of supercapacitors needed to recover braking energy and to supply the bus in the case of electrical microcuts. Finally, A bond graph thermal model of the stack is developed and the efficiency of this model is validated based on experimental results on a test bench.","PeriodicalId":169529,"journal":{"name":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Electro-thermal sizing of supercapacitor stack for an electrical bus: Bond graph approach\",\"authors\":\"A. Hijazi, E. Bideaux, P. Venet, G. Clerc\",\"doi\":\"10.1109/EVER.2015.7112988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of electro-thermal sizing of supercapacitors stack. The application concern the alimentation of trolleybus in case of electrical microcuts that frequently occurs during circulation of the trolleybus. The goal is to size the number of supercapacitor to be implemented knowing the speed and acceleration profile of the trolleybus and to discuss about the thermal performance of the obtained stack. Based on bond graph approach, direct and inverse model of the kinematic chain of trolleybus is developed in order to deduce the consumption of an electrical bus and the braking energy in relation with the speed profile. Validation of direct model has been carried out with experimental results. Then, based on the Ragone plot of supercapacitors, we study the number of supercapacitors needed to recover braking energy and to supply the bus in the case of electrical microcuts. Finally, A bond graph thermal model of the stack is developed and the efficiency of this model is validated based on experimental results on a test bench.\",\"PeriodicalId\":169529,\"journal\":{\"name\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2015.7112988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2015.7112988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文对超级电容器堆的电热尺寸进行了研究。该应用涉及无轨电车在运行过程中经常发生的电气微切口的营养问题。目标是在了解无轨电车的速度和加速度分布的情况下,确定要实施的超级电容器的数量,并讨论所获得的堆栈的热性能。基于键合图法,建立了无轨电车运动链的正逆模型,推导出电动无轨电车的消耗和制动能量与速度分布的关系。用实验结果对直接模型进行了验证。然后,基于超级电容器的Ragone图,研究了在电微切割情况下,回收制动能量并为母线供电所需的超级电容器数量。最后,建立了叠片的键合图热模型,并通过台架实验验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-thermal sizing of supercapacitor stack for an electrical bus: Bond graph approach
This paper is devoted to the study of electro-thermal sizing of supercapacitors stack. The application concern the alimentation of trolleybus in case of electrical microcuts that frequently occurs during circulation of the trolleybus. The goal is to size the number of supercapacitor to be implemented knowing the speed and acceleration profile of the trolleybus and to discuss about the thermal performance of the obtained stack. Based on bond graph approach, direct and inverse model of the kinematic chain of trolleybus is developed in order to deduce the consumption of an electrical bus and the braking energy in relation with the speed profile. Validation of direct model has been carried out with experimental results. Then, based on the Ragone plot of supercapacitors, we study the number of supercapacitors needed to recover braking energy and to supply the bus in the case of electrical microcuts. Finally, A bond graph thermal model of the stack is developed and the efficiency of this model is validated based on experimental results on a test bench.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信