面向能源互联网的能源管理:博弈论与基于大数据的可再生能源预测的结合

Zhenyu Zhou, Fei Xiong, Chen Xu, Sheng Zhou, Jie Gong
{"title":"面向能源互联网的能源管理:博弈论与基于大数据的可再生能源预测的结合","authors":"Zhenyu Zhou, Fei Xiong, Chen Xu, Sheng Zhou, Jie Gong","doi":"10.1109/ICEI.2017.42","DOIUrl":null,"url":null,"abstract":"Energy internet provides an open framework for integrating every pieces of equipment involved in energy generation, transmission, transformation, distribution and consumption with novel information and communication technologies. In this paper, we adopt a combination of game theory and big data to address the coordinated management of renewable and traditional energy, which is a typical issue on energy interconnections. We formulate the energy management problem as a three-stage Stackelberg game, and employ the backward induction method to derive the closed-form expressions of the optimal strategies. Next, we study the big data-based power generation forecasting techniques, and introduce a scheme of the wind power forecasting, which can assist the microgrid to make strategies. Simulation results show that more accurate prediction results of wind power is conducive to better energy management.","PeriodicalId":356402,"journal":{"name":"2017 IEEE International Conference on Energy Internet (ICEI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Energy Management for Energy Internet: A Combination of Game Theory and Big Data-Based Renewable Power Forecasting\",\"authors\":\"Zhenyu Zhou, Fei Xiong, Chen Xu, Sheng Zhou, Jie Gong\",\"doi\":\"10.1109/ICEI.2017.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy internet provides an open framework for integrating every pieces of equipment involved in energy generation, transmission, transformation, distribution and consumption with novel information and communication technologies. In this paper, we adopt a combination of game theory and big data to address the coordinated management of renewable and traditional energy, which is a typical issue on energy interconnections. We formulate the energy management problem as a three-stage Stackelberg game, and employ the backward induction method to derive the closed-form expressions of the optimal strategies. Next, we study the big data-based power generation forecasting techniques, and introduce a scheme of the wind power forecasting, which can assist the microgrid to make strategies. Simulation results show that more accurate prediction results of wind power is conducive to better energy management.\",\"PeriodicalId\":356402,\"journal\":{\"name\":\"2017 IEEE International Conference on Energy Internet (ICEI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Energy Internet (ICEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEI.2017.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Energy Internet (ICEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEI.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

能源互联网提供了一个开放的框架,将涉及能源生产、传输、转换、分配和消费的每一个设备与新的信息和通信技术集成在一起。本文采用博弈论与大数据相结合的方法来解决可再生能源与传统能源的协同管理问题,这是能源互联中的一个典型问题。将能量管理问题表述为一个三阶段Stackelberg博弈,并利用逆向归纳法推导出最优策略的封闭表达式。其次,研究了基于大数据的发电量预测技术,提出了一种风电发电量预测方案,该方案可以辅助微电网制定策略。仿真结果表明,更准确的风电预测结果有利于更好地进行能源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Management for Energy Internet: A Combination of Game Theory and Big Data-Based Renewable Power Forecasting
Energy internet provides an open framework for integrating every pieces of equipment involved in energy generation, transmission, transformation, distribution and consumption with novel information and communication technologies. In this paper, we adopt a combination of game theory and big data to address the coordinated management of renewable and traditional energy, which is a typical issue on energy interconnections. We formulate the energy management problem as a three-stage Stackelberg game, and employ the backward induction method to derive the closed-form expressions of the optimal strategies. Next, we study the big data-based power generation forecasting techniques, and introduce a scheme of the wind power forecasting, which can assist the microgrid to make strategies. Simulation results show that more accurate prediction results of wind power is conducive to better energy management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信