多单元MU-MIMO的深度展开

Lukas Schynol, M. Pesavento
{"title":"多单元MU-MIMO的深度展开","authors":"Lukas Schynol, M. Pesavento","doi":"10.23919/eusipco55093.2022.9909892","DOIUrl":null,"url":null,"abstract":"The weighted sum-rate maximization in coordinated multicell MIMO networks with intra- and intercell interference and local channel state at the base stations is considered. Based on the concept of unrolling applied to the classical weighted minimum mean squared error (WMMSE) algorithm and ideas from graph signal processing, we present the GCN-WMMSE deep network architecture for transceiver design in multicell MU-MIMO interference channels with local channel state information. Similar to the original WMMSE algorithm it facilitates a distributed implementation in multicell networks. However, GCN-WMMSE significantly accelerates the convergence and con-sequently alleviates the communication overhead in a distributed deployment. Additionally, the architecture is agnostic to different wireless network topologies while exhibiting a low number of trainable parameters and high efficiency w.r.t. training data.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Unfolding in Multicell MU-MIMO\",\"authors\":\"Lukas Schynol, M. Pesavento\",\"doi\":\"10.23919/eusipco55093.2022.9909892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weighted sum-rate maximization in coordinated multicell MIMO networks with intra- and intercell interference and local channel state at the base stations is considered. Based on the concept of unrolling applied to the classical weighted minimum mean squared error (WMMSE) algorithm and ideas from graph signal processing, we present the GCN-WMMSE deep network architecture for transceiver design in multicell MU-MIMO interference channels with local channel state information. Similar to the original WMMSE algorithm it facilitates a distributed implementation in multicell networks. However, GCN-WMMSE significantly accelerates the convergence and con-sequently alleviates the communication overhead in a distributed deployment. Additionally, the architecture is agnostic to different wireless network topologies while exhibiting a low number of trainable parameters and high efficiency w.r.t. training data.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了蜂窝内、蜂窝间干扰和基站本地信道状态下多蜂窝协同MIMO网络的加权和速率最大化问题。基于经典加权最小均方误差(WMMSE)算法的展开概念和图信号处理的思想,提出了一种适用于具有本地信道状态信息的多单元MU-MIMO干扰信道的GCN-WMMSE深度网络架构。与原始的WMMSE算法类似,它便于在多蜂窝网络中分布式实现。然而,GCN-WMMSE显著加快了收敛速度,从而减轻了分布式部署中的通信开销。此外,该体系结构对不同的无线网络拓扑不可知,同时显示出较少的可训练参数和高效率的w.r.t.训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Unfolding in Multicell MU-MIMO
The weighted sum-rate maximization in coordinated multicell MIMO networks with intra- and intercell interference and local channel state at the base stations is considered. Based on the concept of unrolling applied to the classical weighted minimum mean squared error (WMMSE) algorithm and ideas from graph signal processing, we present the GCN-WMMSE deep network architecture for transceiver design in multicell MU-MIMO interference channels with local channel state information. Similar to the original WMMSE algorithm it facilitates a distributed implementation in multicell networks. However, GCN-WMMSE significantly accelerates the convergence and con-sequently alleviates the communication overhead in a distributed deployment. Additionally, the architecture is agnostic to different wireless network topologies while exhibiting a low number of trainable parameters and high efficiency w.r.t. training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信