{"title":"基于广义线性模型的掩模数据分析","authors":"Hasan Misaii, F. Haghighi, S. E. Mahabadi","doi":"10.30699/IJRRS.3.2.1","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is proposed to describe masked set of each failure time.Moreover, a Generalized Linear model (GLM) with appropriate link function is used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and Bayesian methods were considered.The likelihood function with both missing at random (MAR) and missing not at random (MNAR) mechanismsare derived.Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of the model parameters.The proposed methods have been illustrated through a real example.","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masked Data Analysis based on the Generalized Linear Model\",\"authors\":\"Hasan Misaii, F. Haghighi, S. E. Mahabadi\",\"doi\":\"10.30699/IJRRS.3.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is proposed to describe masked set of each failure time.Moreover, a Generalized Linear model (GLM) with appropriate link function is used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and Bayesian methods were considered.The likelihood function with both missing at random (MAR) and missing not at random (MNAR) mechanismsare derived.Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of the model parameters.The proposed methods have been illustrated through a real example.\",\"PeriodicalId\":395350,\"journal\":{\"name\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/IJRRS.3.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/IJRRS.3.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Masked Data Analysis based on the Generalized Linear Model
In this paper, we consider the estimation problem in the presence of masked data for series systems. A missing indicator is proposed to describe masked set of each failure time.Moreover, a Generalized Linear model (GLM) with appropriate link function is used to model masked indicator in order to involve masked information into likelihood function. Both maximum likelihood and Bayesian methods were considered.The likelihood function with both missing at random (MAR) and missing not at random (MNAR) mechanismsare derived.Using an auxiliary variable, a Bayesian approach is expanded to obtain posterior estimations of the model parameters.The proposed methods have been illustrated through a real example.