一种新的半监督学习协同图像检索方法

Wei Liu, Wenhui Li
{"title":"一种新的半监督学习协同图像检索方法","authors":"Wei Liu, Wenhui Li","doi":"10.1109/CISE.2009.5366586","DOIUrl":null,"url":null,"abstract":"Content-based image retrieval (CBIR) solutions with regular Euclidean metric usually cannot achieve satisfactory performance due to the semantic gap. Hence, relevance feedback has been adopted as a promising approach to improve the search performance. In this paper, we propose a novel idea of learning with historical relevance feedback log-data,and adopt a new methodology called“Collaborative Image Retrieval” (CIR). To effectively search the log data,we propose a novel semisupervised distance metric learning technique, called “Laplacian Regularized Metric Learning” (LRML), for learning robust distance metrics for CIR.Different from previous methods,the proposed LRML method integrates both log data and unlabeled data information through an effective graph regularization framework. We show that reliable metrics can be learned from real log data eventhey may be noisy and limited at the beginning stage of a CIR system. Keywordssemi-supervised learning ; Collaborative Image Retrieval ; semantic gap","PeriodicalId":135441,"journal":{"name":"2009 International Conference on Computational Intelligence and Software Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Semi-Supervised Learning for Collaborative Image Retrieval\",\"authors\":\"Wei Liu, Wenhui Li\",\"doi\":\"10.1109/CISE.2009.5366586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-based image retrieval (CBIR) solutions with regular Euclidean metric usually cannot achieve satisfactory performance due to the semantic gap. Hence, relevance feedback has been adopted as a promising approach to improve the search performance. In this paper, we propose a novel idea of learning with historical relevance feedback log-data,and adopt a new methodology called“Collaborative Image Retrieval” (CIR). To effectively search the log data,we propose a novel semisupervised distance metric learning technique, called “Laplacian Regularized Metric Learning” (LRML), for learning robust distance metrics for CIR.Different from previous methods,the proposed LRML method integrates both log data and unlabeled data information through an effective graph regularization framework. We show that reliable metrics can be learned from real log data eventhey may be noisy and limited at the beginning stage of a CIR system. Keywordssemi-supervised learning ; Collaborative Image Retrieval ; semantic gap\",\"PeriodicalId\":135441,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2009.5366586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2009.5366586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于内容的图像检索(CBIR)方案采用规则的欧几里得度量,由于语义差距的存在,往往不能达到令人满意的检索效果。因此,相关性反馈被认为是一种很有前途的提高搜索性能的方法。本文提出了一种利用历史相关反馈日志数据进行学习的新思路,并采用了一种称为“协同图像检索”(CIR)的新方法。为了有效地搜索日志数据,我们提出了一种新的半监督距离度量学习技术,称为“拉普拉斯正则化度量学习”(LRML),用于学习cirr的鲁棒距离度量。与以往的方法不同,该方法通过有效的图正则化框架将日志数据和未标记数据信息集成在一起。我们证明了可靠的指标可以从真实的日志数据中学习,即使它们在CIR系统的开始阶段可能是有噪声的和有限的。关键词半监督学习;协同图像检索;语义鸿沟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Semi-Supervised Learning for Collaborative Image Retrieval
Content-based image retrieval (CBIR) solutions with regular Euclidean metric usually cannot achieve satisfactory performance due to the semantic gap. Hence, relevance feedback has been adopted as a promising approach to improve the search performance. In this paper, we propose a novel idea of learning with historical relevance feedback log-data,and adopt a new methodology called“Collaborative Image Retrieval” (CIR). To effectively search the log data,we propose a novel semisupervised distance metric learning technique, called “Laplacian Regularized Metric Learning” (LRML), for learning robust distance metrics for CIR.Different from previous methods,the proposed LRML method integrates both log data and unlabeled data information through an effective graph regularization framework. We show that reliable metrics can be learned from real log data eventhey may be noisy and limited at the beginning stage of a CIR system. Keywordssemi-supervised learning ; Collaborative Image Retrieval ; semantic gap
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信