鲁棒感知哈希分类问题:决策理论和实际考虑

S. Voloshynovskiy, O. Koval, F. Beekhof, T. Pun
{"title":"鲁棒感知哈希分类问题:决策理论和实际考虑","authors":"S. Voloshynovskiy, O. Koval, F. Beekhof, T. Pun","doi":"10.1109/MMSP.2007.4412887","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of robust perceptual hashing as composite hypothesis testing. First, we formulate this problem as multiple hypothesis testing under prior ambiguity about source statistics and channel parameters representing a family of restricted geometric attacks. We introduce an efficient universal test that achieves the performance of informed decision rules for the specified class of source and geometric channel models. Finally, we consider the practical hash construction, which compromises computational complexity, robustness to geometrical transformations, lack of priors about source statistics and security requirements. The proposed hash is based on a binary hypothesis testing for randomly or semantically selected blocks or regions in sequences or images. We present the results of experimental validation of the developed concept that justifies the practical efficiency of the elaborated framework.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Robust perceptual hashing as classification problem: decision-theoretic and practical considerations\",\"authors\":\"S. Voloshynovskiy, O. Koval, F. Beekhof, T. Pun\",\"doi\":\"10.1109/MMSP.2007.4412887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of robust perceptual hashing as composite hypothesis testing. First, we formulate this problem as multiple hypothesis testing under prior ambiguity about source statistics and channel parameters representing a family of restricted geometric attacks. We introduce an efficient universal test that achieves the performance of informed decision rules for the specified class of source and geometric channel models. Finally, we consider the practical hash construction, which compromises computational complexity, robustness to geometrical transformations, lack of priors about source statistics and security requirements. The proposed hash is based on a binary hypothesis testing for randomly or semantically selected blocks or regions in sequences or images. We present the results of experimental validation of the developed concept that justifies the practical efficiency of the elaborated framework.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文将鲁棒感知哈希问题视为复合假设检验问题。首先,我们将该问题表述为在源统计数据和信道参数表示一系列受限几何攻击的先验歧义下的多重假设检验。我们引入了一个有效的通用测试,该测试可以实现指定类型的源和几何信道模型的知情决策规则的性能。最后,我们考虑了实际的哈希构造,它损害了计算复杂性,对几何变换的鲁棒性,缺乏对源统计和安全要求的先验性。所提出的哈希是基于对序列或图像中随机或语义选择的块或区域的二元假设检验。我们提出了开发概念的实验验证结果,证明了详细阐述的框架的实际效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust perceptual hashing as classification problem: decision-theoretic and practical considerations
In this paper we consider the problem of robust perceptual hashing as composite hypothesis testing. First, we formulate this problem as multiple hypothesis testing under prior ambiguity about source statistics and channel parameters representing a family of restricted geometric attacks. We introduce an efficient universal test that achieves the performance of informed decision rules for the specified class of source and geometric channel models. Finally, we consider the practical hash construction, which compromises computational complexity, robustness to geometrical transformations, lack of priors about source statistics and security requirements. The proposed hash is based on a binary hypothesis testing for randomly or semantically selected blocks or regions in sequences or images. We present the results of experimental validation of the developed concept that justifies the practical efficiency of the elaborated framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信