基于web的意见挖掘的三种方法分析

Haibing Ma, Yibing Geng, Junrui Qiu
{"title":"基于web的意见挖掘的三种方法分析","authors":"Haibing Ma, Yibing Geng, Junrui Qiu","doi":"10.1109/ICMLC.2011.6016768","DOIUrl":null,"url":null,"abstract":"For the purpose of measuring semantic orientation of documents, we implemented an opinion mining tool which hybrids three different methods: The first one is based on semantic patterns, which simplify the structure of the natural language syntax; the second is based on the weighted sentiment lexicon, which used as semantic feature words; and the third one is based on traditional KNN or SVM text classification method. Our experiments show that each method has its own shorts and advantages.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of three methods for web-based opinion mining\",\"authors\":\"Haibing Ma, Yibing Geng, Junrui Qiu\",\"doi\":\"10.1109/ICMLC.2011.6016768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the purpose of measuring semantic orientation of documents, we implemented an opinion mining tool which hybrids three different methods: The first one is based on semantic patterns, which simplify the structure of the natural language syntax; the second is based on the weighted sentiment lexicon, which used as semantic feature words; and the third one is based on traditional KNN or SVM text classification method. Our experiments show that each method has its own shorts and advantages.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了测量文档的语义取向,我们实现了一种混合了三种不同方法的意见挖掘工具:第一种是基于语义模式的意见挖掘工具,简化了自然语言语法的结构;二是基于加权情感词汇,将其作为语义特征词;第三种是基于传统的KNN或SVM文本分类方法。我们的实验表明,每种方法都有自己的缺点和优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of three methods for web-based opinion mining
For the purpose of measuring semantic orientation of documents, we implemented an opinion mining tool which hybrids three different methods: The first one is based on semantic patterns, which simplify the structure of the natural language syntax; the second is based on the weighted sentiment lexicon, which used as semantic feature words; and the third one is based on traditional KNN or SVM text classification method. Our experiments show that each method has its own shorts and advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信