基于小波的对比度限制自适应直方图均衡化视频增强

Fatma Faek, O. Nomir, Ehab Essa, Ebrahim El-henawy
{"title":"基于小波的对比度限制自适应直方图均衡化视频增强","authors":"Fatma Faek, O. Nomir, Ehab Essa, Ebrahim El-henawy","doi":"10.21608/mjcis.2018.311997","DOIUrl":null,"url":null,"abstract":"A combination of wavelet transforms and contrast limited adaptive histogram equalization (CLAHE) techniques are used to efficiently enhance videos. The proposed technique handles the noises within video frames and enhances the resolution of the video. Lifting wavelet transform (LWT) and stationary wavelet transform (SWT) are applied to separate original frame into the low-frequency sub-bands, and the high-frequency sub-bands. Thereafter, we applied the interpolation to correct the coefficients of the high-frequency and the original frame separately. Next, Inverse Lifting wavelet transform (ILWT) is utilized for the integration of each all these enhanced sub-band. Finally, the CLAHE algorithm is applied to make the details of the frame more visible, and meaningful to generally improve the resolution of the video. The output video shows that the proposed technique enhances the quality of resolution videos under various environmental conditions, alleviates noises and avoids the over-enhancement problems.","PeriodicalId":253950,"journal":{"name":"Mansoura Journal for Computer and Information Sciences","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-based Video Enhancement Using Contrast Limited Adaptive Histogram Equalization\",\"authors\":\"Fatma Faek, O. Nomir, Ehab Essa, Ebrahim El-henawy\",\"doi\":\"10.21608/mjcis.2018.311997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combination of wavelet transforms and contrast limited adaptive histogram equalization (CLAHE) techniques are used to efficiently enhance videos. The proposed technique handles the noises within video frames and enhances the resolution of the video. Lifting wavelet transform (LWT) and stationary wavelet transform (SWT) are applied to separate original frame into the low-frequency sub-bands, and the high-frequency sub-bands. Thereafter, we applied the interpolation to correct the coefficients of the high-frequency and the original frame separately. Next, Inverse Lifting wavelet transform (ILWT) is utilized for the integration of each all these enhanced sub-band. Finally, the CLAHE algorithm is applied to make the details of the frame more visible, and meaningful to generally improve the resolution of the video. The output video shows that the proposed technique enhances the quality of resolution videos under various environmental conditions, alleviates noises and avoids the over-enhancement problems.\",\"PeriodicalId\":253950,\"journal\":{\"name\":\"Mansoura Journal for Computer and Information Sciences\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mansoura Journal for Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjcis.2018.311997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mansoura Journal for Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjcis.2018.311997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合小波变换和对比度有限的自适应直方图均衡化(CLAHE)技术有效地增强了视频。该技术处理了视频帧内的噪声,提高了视频的分辨率。采用提升小波变换(LWT)和平稳小波变换(SWT)将原始帧分离为低频子带和高频子带。然后利用插值分别对高频和原帧的系数进行校正。然后,利用逆提升小波变换(ILWT)对各增强子带进行积分。最后,应用CLAHE算法使帧的细节更加清晰可见,对整体提高视频的分辨率具有重要意义。输出视频结果表明,该技术提高了各种环境条件下分辨率视频的质量,减轻了噪声,避免了过度增强问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-based Video Enhancement Using Contrast Limited Adaptive Histogram Equalization
A combination of wavelet transforms and contrast limited adaptive histogram equalization (CLAHE) techniques are used to efficiently enhance videos. The proposed technique handles the noises within video frames and enhances the resolution of the video. Lifting wavelet transform (LWT) and stationary wavelet transform (SWT) are applied to separate original frame into the low-frequency sub-bands, and the high-frequency sub-bands. Thereafter, we applied the interpolation to correct the coefficients of the high-frequency and the original frame separately. Next, Inverse Lifting wavelet transform (ILWT) is utilized for the integration of each all these enhanced sub-band. Finally, the CLAHE algorithm is applied to make the details of the frame more visible, and meaningful to generally improve the resolution of the video. The output video shows that the proposed technique enhances the quality of resolution videos under various environmental conditions, alleviates noises and avoids the over-enhancement problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信