{"title":"基于信息熵和人工神经网络的股票价格预测","authors":"Zang Yeze, Wang Yiying","doi":"10.1109/INFOMAN.2019.8714662","DOIUrl":null,"url":null,"abstract":"Stock market is one of the most important components of the financial system. It directs money from investors to support the activity and development of the associated company. Therefore, understanding and modeling the stock price dynamics become critically important, in terms of financial system stability, investment strategy, and market risk control. To better model the temporal dynamics of stock price, we propose a combined machine learning framework with information theory and Artificial Neural Network (ANN). This method creatively uses information entropy to inform non-linear causality as well as stock relevance and uses it to facilitate the ANN time series modeling. Our analysis with Google, Amazon, Facebook, and Apple stock prices demonstrates the feasibility of this machine learning framework.","PeriodicalId":186072,"journal":{"name":"2019 5th International Conference on Information Management (ICIM)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stock Price Prediction Based on Information Entropy and Artificial Neural Network\",\"authors\":\"Zang Yeze, Wang Yiying\",\"doi\":\"10.1109/INFOMAN.2019.8714662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock market is one of the most important components of the financial system. It directs money from investors to support the activity and development of the associated company. Therefore, understanding and modeling the stock price dynamics become critically important, in terms of financial system stability, investment strategy, and market risk control. To better model the temporal dynamics of stock price, we propose a combined machine learning framework with information theory and Artificial Neural Network (ANN). This method creatively uses information entropy to inform non-linear causality as well as stock relevance and uses it to facilitate the ANN time series modeling. Our analysis with Google, Amazon, Facebook, and Apple stock prices demonstrates the feasibility of this machine learning framework.\",\"PeriodicalId\":186072,\"journal\":{\"name\":\"2019 5th International Conference on Information Management (ICIM)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Information Management (ICIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOMAN.2019.8714662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Information Management (ICIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOMAN.2019.8714662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stock Price Prediction Based on Information Entropy and Artificial Neural Network
Stock market is one of the most important components of the financial system. It directs money from investors to support the activity and development of the associated company. Therefore, understanding and modeling the stock price dynamics become critically important, in terms of financial system stability, investment strategy, and market risk control. To better model the temporal dynamics of stock price, we propose a combined machine learning framework with information theory and Artificial Neural Network (ANN). This method creatively uses information entropy to inform non-linear causality as well as stock relevance and uses it to facilitate the ANN time series modeling. Our analysis with Google, Amazon, Facebook, and Apple stock prices demonstrates the feasibility of this machine learning framework.