信道均衡和贝叶斯点机

E. Harrington, Jyrki Kivinen, R. C. Williamson
{"title":"信道均衡和贝叶斯点机","authors":"E. Harrington, Jyrki Kivinen, R. C. Williamson","doi":"10.1109/ICASSP.2003.1202687","DOIUrl":null,"url":null,"abstract":"Equalizers trained with a large margin have an ability to better handle noise in unseen data and drift in the target solution. We present a method of approximating the Bayes optimal strategy which provides a large margin equalizer, the Bayes point equalizer. The method we use to estimate the Bayes point is to average N equalizers that are run on independently chosen subsets of the data. To better estimate the Bayes point we investigated two methods to create diversity amongst the N equalizers. We show experimentally that the Bayes point equalizer for appropriately large step sizes offers improvement on LMS and LMA in the presence of channel noise and training sequence errors. This allows for shorter training sequences albeit with higher computational requirements.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel equalization and the Bayes point machine\",\"authors\":\"E. Harrington, Jyrki Kivinen, R. C. Williamson\",\"doi\":\"10.1109/ICASSP.2003.1202687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equalizers trained with a large margin have an ability to better handle noise in unseen data and drift in the target solution. We present a method of approximating the Bayes optimal strategy which provides a large margin equalizer, the Bayes point equalizer. The method we use to estimate the Bayes point is to average N equalizers that are run on independently chosen subsets of the data. To better estimate the Bayes point we investigated two methods to create diversity amongst the N equalizers. We show experimentally that the Bayes point equalizer for appropriately large step sizes offers improvement on LMS and LMA in the presence of channel noise and training sequence errors. This allows for shorter training sequences albeit with higher computational requirements.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1202687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1202687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经过大裕度训练的均衡器能够更好地处理未见数据中的噪声和目标解中的漂移。我们提出了一种近似贝叶斯最优策略的方法,它提供了一个大余量均衡器,贝叶斯点均衡器。我们用来估计贝叶斯点的方法是平均N个均衡器,这些均衡器运行在独立选择的数据子集上。为了更好地估计贝叶斯点,我们研究了两种方法来创建N个均衡器之间的多样性。我们通过实验证明,在存在信道噪声和训练序列误差的情况下,适当大步长的贝叶斯点均衡器可以改善LMS和LMA。这允许更短的训练序列,尽管有更高的计算要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel equalization and the Bayes point machine
Equalizers trained with a large margin have an ability to better handle noise in unseen data and drift in the target solution. We present a method of approximating the Bayes optimal strategy which provides a large margin equalizer, the Bayes point equalizer. The method we use to estimate the Bayes point is to average N equalizers that are run on independently chosen subsets of the data. To better estimate the Bayes point we investigated two methods to create diversity amongst the N equalizers. We show experimentally that the Bayes point equalizer for appropriately large step sizes offers improvement on LMS and LMA in the presence of channel noise and training sequence errors. This allows for shorter training sequences albeit with higher computational requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信