自然语言到Python的源代码使用变压器

Meet Shah, Rajat Shenoy, R. Shankarmani
{"title":"自然语言到Python的源代码使用变压器","authors":"Meet Shah, Rajat Shenoy, R. Shankarmani","doi":"10.1109/CONIT51480.2021.9498268","DOIUrl":null,"url":null,"abstract":"Writing code using natural language is a very exciting application of Neural Machine Translation. To achieve a small part of such an application, in this paper, we try to generate python source code snippets from natural English language descriptions using the Django dataset. We trained the self-attention based transformer architecture on the snippets from the dataset. We achieved a BLEU score of 64.29","PeriodicalId":426131,"journal":{"name":"2021 International Conference on Intelligent Technologies (CONIT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Natural Language to Python Source Code using Transformers\",\"authors\":\"Meet Shah, Rajat Shenoy, R. Shankarmani\",\"doi\":\"10.1109/CONIT51480.2021.9498268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writing code using natural language is a very exciting application of Neural Machine Translation. To achieve a small part of such an application, in this paper, we try to generate python source code snippets from natural English language descriptions using the Django dataset. We trained the self-attention based transformer architecture on the snippets from the dataset. We achieved a BLEU score of 64.29\",\"PeriodicalId\":426131,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIT51480.2021.9498268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT51480.2021.9498268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用自然语言编写代码是神经机器翻译的一个非常令人兴奋的应用。为了实现这样一个应用程序的一小部分,在本文中,我们尝试使用Django数据集从自然英语语言描述生成python源代码片段。我们在数据集中的片段上训练了基于自关注的转换器架构。我们获得了64.29分的BLEU分数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Language to Python Source Code using Transformers
Writing code using natural language is a very exciting application of Neural Machine Translation. To achieve a small part of such an application, in this paper, we try to generate python source code snippets from natural English language descriptions using the Django dataset. We trained the self-attention based transformer architecture on the snippets from the dataset. We achieved a BLEU score of 64.29
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信