统计与神经机器翻译中的术语翻译研究——以英语到印地语和印地语到英语为例

Rejwanul Haque, Mohammed Hasanuzzaman, Andy Way
{"title":"统计与神经机器翻译中的术语翻译研究——以英语到印地语和印地语到英语为例","authors":"Rejwanul Haque, Mohammed Hasanuzzaman, Andy Way","doi":"10.26615/978-954-452-056-4_052","DOIUrl":null,"url":null,"abstract":"Terminology translation plays a critical role in domain-specific machine translation (MT). In this paper, we conduct a comparative qualitative evaluation on terminology translation in phrase-based statistical MT (PB-SMT) and neural MT (NMT) in two translation directions: English-to-Hindi and Hindi-to-English. For this, we select a test set from a legal domain corpus and create a gold standard for evaluating terminology translation in MT. We also propose an error typology taking the terminology translation errors into consideration. We evaluate the MT systems’ performance on terminology translation, and demonstrate our findings, unraveling strengths, weaknesses, and similarities of PB-SMT and NMT in the area of term translation.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindi-to-English\",\"authors\":\"Rejwanul Haque, Mohammed Hasanuzzaman, Andy Way\",\"doi\":\"10.26615/978-954-452-056-4_052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terminology translation plays a critical role in domain-specific machine translation (MT). In this paper, we conduct a comparative qualitative evaluation on terminology translation in phrase-based statistical MT (PB-SMT) and neural MT (NMT) in two translation directions: English-to-Hindi and Hindi-to-English. For this, we select a test set from a legal domain corpus and create a gold standard for evaluating terminology translation in MT. We also propose an error typology taking the terminology translation errors into consideration. We evaluate the MT systems’ performance on terminology translation, and demonstrate our findings, unraveling strengths, weaknesses, and similarities of PB-SMT and NMT in the area of term translation.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

术语翻译在特定领域机器翻译中起着至关重要的作用。在本文中,我们对基于短语的统计机器翻译(PB-SMT)和神经机器翻译(NMT)在英语到印地语和印地语到英语两个翻译方向上的术语翻译进行了比较定性评价。为此,我们从法律领域语料库中选择了一个测试集,并创建了一个评估MT中术语翻译的黄金标准。我们还提出了一个考虑术语翻译错误的错误类型学。我们评估了机器翻译系统在术语翻译方面的表现,并展示了我们的发现,揭示了PB-SMT和NMT在术语翻译领域的优势、劣势和相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindi-to-English
Terminology translation plays a critical role in domain-specific machine translation (MT). In this paper, we conduct a comparative qualitative evaluation on terminology translation in phrase-based statistical MT (PB-SMT) and neural MT (NMT) in two translation directions: English-to-Hindi and Hindi-to-English. For this, we select a test set from a legal domain corpus and create a gold standard for evaluating terminology translation in MT. We also propose an error typology taking the terminology translation errors into consideration. We evaluate the MT systems’ performance on terminology translation, and demonstrate our findings, unraveling strengths, weaknesses, and similarities of PB-SMT and NMT in the area of term translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信