不利光照条件下目标检测的轻量级框架

H. Liu, Meibao Yao
{"title":"不利光照条件下目标检测的轻量级框架","authors":"H. Liu, Meibao Yao","doi":"10.1109/ICARM58088.2023.10218806","DOIUrl":null,"url":null,"abstract":"Although the latest object detection methods have demonstrated strong performance on large-scale comprehensive datasets, various adverse lighting conditions limit their potential application in real-world scenarios, especially the deployment on mobile robots. In this study, we propose a novel and lightweight re-illumination framework for end-to-end adaptive enhancement for adverse lighting images. Specifically, we employ a set of differentiable image processing modules and pixel-wise curve parameter mapping to adapt to various lighting conditions. We use YOLOv3 detection loss to learn the curve parameters of the U-shaped parameter predictor (UPP) in a weakly-supervision manner. We further deploy the proposed framework to a low-power hardware platform. The experimental results demonstrate the effectiveness of our proposed method in various adverse lighting conditions(i.e. haze, low-light).","PeriodicalId":220013,"journal":{"name":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"23 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Framework for Objection Detection in Adverse Lighting Conditions\",\"authors\":\"H. Liu, Meibao Yao\",\"doi\":\"10.1109/ICARM58088.2023.10218806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the latest object detection methods have demonstrated strong performance on large-scale comprehensive datasets, various adverse lighting conditions limit their potential application in real-world scenarios, especially the deployment on mobile robots. In this study, we propose a novel and lightweight re-illumination framework for end-to-end adaptive enhancement for adverse lighting images. Specifically, we employ a set of differentiable image processing modules and pixel-wise curve parameter mapping to adapt to various lighting conditions. We use YOLOv3 detection loss to learn the curve parameters of the U-shaped parameter predictor (UPP) in a weakly-supervision manner. We further deploy the proposed framework to a low-power hardware platform. The experimental results demonstrate the effectiveness of our proposed method in various adverse lighting conditions(i.e. haze, low-light).\",\"PeriodicalId\":220013,\"journal\":{\"name\":\"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"23 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM58088.2023.10218806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM58088.2023.10218806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管最新的目标检测方法在大规模综合数据集上表现出强大的性能,但各种不利的光照条件限制了它们在现实场景中的潜在应用,特别是在移动机器人上的部署。在这项研究中,我们提出了一种新的轻量级再照明框架,用于对不利光照图像的端到端自适应增强。具体来说,我们采用了一组可微图像处理模块和逐像素曲线参数映射来适应各种光照条件。我们使用YOLOv3检测损耗以弱监督的方式学习u形参数预测器(UPP)的曲线参数。我们进一步将提出的框架部署到低功耗硬件平台上。实验结果证明了该方法在各种不利光照条件下的有效性。霾,光线暗的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight Framework for Objection Detection in Adverse Lighting Conditions
Although the latest object detection methods have demonstrated strong performance on large-scale comprehensive datasets, various adverse lighting conditions limit their potential application in real-world scenarios, especially the deployment on mobile robots. In this study, we propose a novel and lightweight re-illumination framework for end-to-end adaptive enhancement for adverse lighting images. Specifically, we employ a set of differentiable image processing modules and pixel-wise curve parameter mapping to adapt to various lighting conditions. We use YOLOv3 detection loss to learn the curve parameters of the U-shaped parameter predictor (UPP) in a weakly-supervision manner. We further deploy the proposed framework to a low-power hardware platform. The experimental results demonstrate the effectiveness of our proposed method in various adverse lighting conditions(i.e. haze, low-light).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信