{"title":"如果可以,请加快速度:不透明度验证的条件下界","authors":"Jivr'i Balun, Tomas Masopust, Petr Osivcka","doi":"10.48550/arXiv.2304.09920","DOIUrl":null,"url":null,"abstract":"Opacity is a property of privacy and security applications asking whether, given a system model, a passive intruder that makes online observations of system's behaviour can ascertain some\"secret\"information of the system. Deciding opacity is a PSpace-complete problem, and hence there are no polynomial-time algorithms to verify opacity under the assumption that PSpace differs from PTime. This assumption, however, gives rise to a question whether the existing exponential-time algorithms are the best possible or whether there are faster, sub-exponential-time algorithms. We show that under the (Strong) Exponential Time Hypothesis, there are no algorithms that would be significantly faster than the existing algorithms. As a by-product, we obtained a new conditional lower bound on the time complexity of deciding universality (and therefore also inclusion and equivalence) for nondeterministic finite automata.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed Me up if You Can: Conditional Lower Bounds on Opacity Verification\",\"authors\":\"Jivr'i Balun, Tomas Masopust, Petr Osivcka\",\"doi\":\"10.48550/arXiv.2304.09920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opacity is a property of privacy and security applications asking whether, given a system model, a passive intruder that makes online observations of system's behaviour can ascertain some\\\"secret\\\"information of the system. Deciding opacity is a PSpace-complete problem, and hence there are no polynomial-time algorithms to verify opacity under the assumption that PSpace differs from PTime. This assumption, however, gives rise to a question whether the existing exponential-time algorithms are the best possible or whether there are faster, sub-exponential-time algorithms. We show that under the (Strong) Exponential Time Hypothesis, there are no algorithms that would be significantly faster than the existing algorithms. As a by-product, we obtained a new conditional lower bound on the time complexity of deciding universality (and therefore also inclusion and equivalence) for nondeterministic finite automata.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.09920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.09920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed Me up if You Can: Conditional Lower Bounds on Opacity Verification
Opacity is a property of privacy and security applications asking whether, given a system model, a passive intruder that makes online observations of system's behaviour can ascertain some"secret"information of the system. Deciding opacity is a PSpace-complete problem, and hence there are no polynomial-time algorithms to verify opacity under the assumption that PSpace differs from PTime. This assumption, however, gives rise to a question whether the existing exponential-time algorithms are the best possible or whether there are faster, sub-exponential-time algorithms. We show that under the (Strong) Exponential Time Hypothesis, there are no algorithms that would be significantly faster than the existing algorithms. As a by-product, we obtained a new conditional lower bound on the time complexity of deciding universality (and therefore also inclusion and equivalence) for nondeterministic finite automata.