{"title":"考虑层间性能变化的块级单片3d - ic功耗性能研究","authors":"Shreepad Panth, K. Samadi, Yang Du, S. Lim","doi":"10.1145/2593069.2593188","DOIUrl":null,"url":null,"abstract":"In this paper we study the power vs. performance tradeoff in block-level monolithic 3D IC designs. Our study shows that we can close the power-performance gap between 2D and a theoretical lower bound by up to 50%. We model the inter-tier performance variations caused by a low temperature manufacturing process on the non-bottom tiers. We also model an alternate manufacturing process, where highly resistive tungsten interconnects are used on the bottom tier to withstand a high temperature process on the non bottom tiers. We propose a variation-aware floorplanning technique that makes our design more tolerant to these variations. We demonstrate that our design methods can help us obtain high quality designs even under inter-tier performance variations.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Power-performance study of block-level monolithic 3D-ICs considering inter-tier performance variations\",\"authors\":\"Shreepad Panth, K. Samadi, Yang Du, S. Lim\",\"doi\":\"10.1145/2593069.2593188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the power vs. performance tradeoff in block-level monolithic 3D IC designs. Our study shows that we can close the power-performance gap between 2D and a theoretical lower bound by up to 50%. We model the inter-tier performance variations caused by a low temperature manufacturing process on the non-bottom tiers. We also model an alternate manufacturing process, where highly resistive tungsten interconnects are used on the bottom tier to withstand a high temperature process on the non bottom tiers. We propose a variation-aware floorplanning technique that makes our design more tolerant to these variations. We demonstrate that our design methods can help us obtain high quality designs even under inter-tier performance variations.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-performance study of block-level monolithic 3D-ICs considering inter-tier performance variations
In this paper we study the power vs. performance tradeoff in block-level monolithic 3D IC designs. Our study shows that we can close the power-performance gap between 2D and a theoretical lower bound by up to 50%. We model the inter-tier performance variations caused by a low temperature manufacturing process on the non-bottom tiers. We also model an alternate manufacturing process, where highly resistive tungsten interconnects are used on the bottom tier to withstand a high temperature process on the non bottom tiers. We propose a variation-aware floorplanning technique that makes our design more tolerant to these variations. We demonstrate that our design methods can help us obtain high quality designs even under inter-tier performance variations.