基于量子遗传算法的社交网络社区结构检测

Shikha Gupta, S. Taneja, Naveen Kumar
{"title":"基于量子遗传算法的社交网络社区结构检测","authors":"Shikha Gupta, S. Taneja, Naveen Kumar","doi":"10.1145/2576768.2598277","DOIUrl":null,"url":null,"abstract":"Community detection is a key problem in social network analysis. We propose a two-phase algorithm for detecting community structure in social networks. First phase employs a local-search method to group together nodes that have a high chance of falling in a single community. The second phase is bi-partitioning strategy that optimizes network modularity and deploys a variant of quantum-inspired genetic algorithm. The proposed algorithm does not require any knowledge of the number of communities beforehand and works well for both directed and undirected networks. Experiments on synthetic and real-life networks show that the method is able to successfully reveal community structure with high modularity.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quantum inspired genetic algorithm for community structure detection in social networks\",\"authors\":\"Shikha Gupta, S. Taneja, Naveen Kumar\",\"doi\":\"10.1145/2576768.2598277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community detection is a key problem in social network analysis. We propose a two-phase algorithm for detecting community structure in social networks. First phase employs a local-search method to group together nodes that have a high chance of falling in a single community. The second phase is bi-partitioning strategy that optimizes network modularity and deploys a variant of quantum-inspired genetic algorithm. The proposed algorithm does not require any knowledge of the number of communities beforehand and works well for both directed and undirected networks. Experiments on synthetic and real-life networks show that the method is able to successfully reveal community structure with high modularity.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

社区检测是社会网络分析中的一个关键问题。我们提出了一种两阶段算法来检测社交网络中的社区结构。第一阶段采用局部搜索方法,将落在单个社区中的概率较高的节点分组在一起。第二阶段是双分区策略,优化网络模块化并部署一种量子启发遗传算法的变体。该算法不需要事先知道社区的数量,对有向网络和无向网络都能很好地工作。在合成网络和现实网络上的实验表明,该方法能够成功地揭示具有高度模块化的社区结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum inspired genetic algorithm for community structure detection in social networks
Community detection is a key problem in social network analysis. We propose a two-phase algorithm for detecting community structure in social networks. First phase employs a local-search method to group together nodes that have a high chance of falling in a single community. The second phase is bi-partitioning strategy that optimizes network modularity and deploys a variant of quantum-inspired genetic algorithm. The proposed algorithm does not require any knowledge of the number of communities beforehand and works well for both directed and undirected networks. Experiments on synthetic and real-life networks show that the method is able to successfully reveal community structure with high modularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信