动态进化优化:对变化的频率和幅度的分析

Philipp Rohlfshagen, P. Lehre, X. Yao
{"title":"动态进化优化:对变化的频率和幅度的分析","authors":"Philipp Rohlfshagen, P. Lehre, X. Yao","doi":"10.1145/1569901.1570131","DOIUrl":null,"url":null,"abstract":"In this paper, we rigorously analyse how the magnitude and frequency of change may affect the performance of the algorithm (1+1) EAdyn on a set of artificially designed pseudo-Boolean functions, given a simple but well-defined dynamic framework. We demonstrate some counter-intuitive scenarios that allow us to gain a better understanding of how the dynamics of a function may affect the runtime of an algorithm. In particular, we present the function Magnitude, where the time it takes for the (1+1) EAdyn to relocate the global optimum is less than n2log n (i.e., efficient) with overwhelming probability if the magnitude of change is large. For small changes of magnitude, on the other hand, the expected time to relocate the global optimum is eΩ(n) (i.e., highly inefficient). Similarly, the expected runtime of the (1+1) EAdyn on the function Balance is O(n2) (efficient) for a high frequencies of change and nΩ(√n) (highly inefficient) for low frequencies of change. These results contribute towards a better understanding of dynamic optimisation problems in general and show how traditional analytical methods may be applied in the dynamic case.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Dynamic evolutionary optimisation: an analysis of frequency and magnitude of change\",\"authors\":\"Philipp Rohlfshagen, P. Lehre, X. Yao\",\"doi\":\"10.1145/1569901.1570131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we rigorously analyse how the magnitude and frequency of change may affect the performance of the algorithm (1+1) EAdyn on a set of artificially designed pseudo-Boolean functions, given a simple but well-defined dynamic framework. We demonstrate some counter-intuitive scenarios that allow us to gain a better understanding of how the dynamics of a function may affect the runtime of an algorithm. In particular, we present the function Magnitude, where the time it takes for the (1+1) EAdyn to relocate the global optimum is less than n2log n (i.e., efficient) with overwhelming probability if the magnitude of change is large. For small changes of magnitude, on the other hand, the expected time to relocate the global optimum is eΩ(n) (i.e., highly inefficient). Similarly, the expected runtime of the (1+1) EAdyn on the function Balance is O(n2) (efficient) for a high frequencies of change and nΩ(√n) (highly inefficient) for low frequencies of change. These results contribute towards a better understanding of dynamic optimisation problems in general and show how traditional analytical methods may be applied in the dynamic case.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

在本文中,我们严格分析了变化的幅度和频率如何影响算法(1+1)EAdyn在一组人工设计的伪布尔函数上的性能,给出了一个简单但定义良好的动态框架。我们演示了一些反直觉的场景,使我们能够更好地理解函数的动态如何影响算法的运行时。特别是,我们提出了函数Magnitude,其中(1+1)EAdyn重新定位全局最优所需的时间小于n2log n(即有效),如果变化的幅度很大,则具有压倒性的概率。另一方面,对于较小的幅度变化,重新定位全局最优的预期时间为eΩ(n)(即,效率极低)。类似地,(1+1)EAdyn在函数Balance上的预期运行时间对于高频率的变化是O(n2)(高效),对于低频率的变化是nΩ(√n)(低效)。这些结果有助于更好地理解一般的动态优化问题,并显示传统的分析方法如何应用于动态情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic evolutionary optimisation: an analysis of frequency and magnitude of change
In this paper, we rigorously analyse how the magnitude and frequency of change may affect the performance of the algorithm (1+1) EAdyn on a set of artificially designed pseudo-Boolean functions, given a simple but well-defined dynamic framework. We demonstrate some counter-intuitive scenarios that allow us to gain a better understanding of how the dynamics of a function may affect the runtime of an algorithm. In particular, we present the function Magnitude, where the time it takes for the (1+1) EAdyn to relocate the global optimum is less than n2log n (i.e., efficient) with overwhelming probability if the magnitude of change is large. For small changes of magnitude, on the other hand, the expected time to relocate the global optimum is eΩ(n) (i.e., highly inefficient). Similarly, the expected runtime of the (1+1) EAdyn on the function Balance is O(n2) (efficient) for a high frequencies of change and nΩ(√n) (highly inefficient) for low frequencies of change. These results contribute towards a better understanding of dynamic optimisation problems in general and show how traditional analytical methods may be applied in the dynamic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信