利用块树模式的规范表示获取保留特征块的外平面图模式

Fumiya Tokuhara, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama
{"title":"利用块树模式的规范表示获取保留特征块的外平面图模式","authors":"Fumiya Tokuhara, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama","doi":"10.1109/IWCIA.2016.7805755","DOIUrl":null,"url":null,"abstract":"We consider evolutionary learning, based on Genetic Programming, for acquiring characteristic graph structures from positive and negative outerplanar graph data. We use block preserving outerplanar graph patterns as representations of graph structures. Block tree patterns are tree representations of block preserving outerplanar patterns, and have the structure of unrooted trees some of whose vertices have ordered adjacent vertices. In this paper we propose canonical representations, which are representations having the structure of rooted and ordered trees, of block tree patterns in acquiring characteristic block preserving outerplanar graph patterns. Then we give an algorithm for calculating canonical representations of block tree patterns. Preliminary experimental results show the algorithm is effective in reducing the run time of our evolutionary learning method.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using canonical representations of block tree patterns in acquisition of characteristic block preserving outerplanar graph patterns\",\"authors\":\"Fumiya Tokuhara, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama\",\"doi\":\"10.1109/IWCIA.2016.7805755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider evolutionary learning, based on Genetic Programming, for acquiring characteristic graph structures from positive and negative outerplanar graph data. We use block preserving outerplanar graph patterns as representations of graph structures. Block tree patterns are tree representations of block preserving outerplanar patterns, and have the structure of unrooted trees some of whose vertices have ordered adjacent vertices. In this paper we propose canonical representations, which are representations having the structure of rooted and ordered trees, of block tree patterns in acquiring characteristic block preserving outerplanar graph patterns. Then we give an algorithm for calculating canonical representations of block tree patterns. Preliminary experimental results show the algorithm is effective in reducing the run time of our evolutionary learning method.\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑基于遗传规划的进化学习,从正、负外平面图数据中获取特征图结构。我们使用保留块的外平面图形模式作为图形结构的表示。块树模式是保留块的外平面模式的树形表示,具有无根树的结构,其中一些顶点有有序的相邻顶点。本文提出了块树模式的正则表示,即具有根树和有序树结构的表示,用于获取保留特征块的外平面图模式。然后给出了一种计算块树模式规范化表示的算法。初步实验结果表明,该算法有效地缩短了进化学习方法的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using canonical representations of block tree patterns in acquisition of characteristic block preserving outerplanar graph patterns
We consider evolutionary learning, based on Genetic Programming, for acquiring characteristic graph structures from positive and negative outerplanar graph data. We use block preserving outerplanar graph patterns as representations of graph structures. Block tree patterns are tree representations of block preserving outerplanar patterns, and have the structure of unrooted trees some of whose vertices have ordered adjacent vertices. In this paper we propose canonical representations, which are representations having the structure of rooted and ordered trees, of block tree patterns in acquiring characteristic block preserving outerplanar graph patterns. Then we give an algorithm for calculating canonical representations of block tree patterns. Preliminary experimental results show the algorithm is effective in reducing the run time of our evolutionary learning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信