SEERa:社区预测框架

Soroush Ziaeinejad, Saeed Samet, Hossein Fani
{"title":"SEERa:社区预测框架","authors":"Soroush Ziaeinejad, Saeed Samet, Hossein Fani","doi":"10.1145/3511808.3557529","DOIUrl":null,"url":null,"abstract":"Online user communities exhibit distinct temporal dynamics in response to popular topics or breaking events. Despite abundant community detection libraries, there is yet to be one that provides access to the possible user communities in future time intervals. To bridge this gap, we contribute SEERa, an open-source end-to-end community prediction framework to identify future user communities in a text streaming social network. SEERa incorporates state-of-the-art temporal graph neural networks to model inter-user topical affinities at each time interval via streams of temporal graphs. This all takes place while users' topics of interest and hence their inter-user topical affinities are changing over time. SEERa predicts yet-to-be-seen user communities on the final positions of users' vectors in the latent space. Notably, our framework serves as a one-stop-shop to future user communities for Social Information Retrieval and Social Recommendation systems.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEERa: A Framework for Community Prediction\",\"authors\":\"Soroush Ziaeinejad, Saeed Samet, Hossein Fani\",\"doi\":\"10.1145/3511808.3557529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online user communities exhibit distinct temporal dynamics in response to popular topics or breaking events. Despite abundant community detection libraries, there is yet to be one that provides access to the possible user communities in future time intervals. To bridge this gap, we contribute SEERa, an open-source end-to-end community prediction framework to identify future user communities in a text streaming social network. SEERa incorporates state-of-the-art temporal graph neural networks to model inter-user topical affinities at each time interval via streams of temporal graphs. This all takes place while users' topics of interest and hence their inter-user topical affinities are changing over time. SEERa predicts yet-to-be-seen user communities on the final positions of users' vectors in the latent space. Notably, our framework serves as a one-stop-shop to future user communities for Social Information Retrieval and Social Recommendation systems.\",\"PeriodicalId\":389624,\"journal\":{\"name\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511808.3557529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线用户社区在响应流行话题或突发事件时表现出明显的时间动态。尽管有大量的社区检测库,但还没有一个库能够在未来的时间间隔内提供对可能的用户社区的访问。为了弥补这一差距,我们贡献了SEERa,这是一个开源的端到端社区预测框架,用于识别文本流社交网络中的未来用户社区。SEERa结合了最先进的时间图神经网络,通过时间图流在每个时间间隔对用户间的主题亲和力进行建模。这一切都发生在用户感兴趣的话题和用户间话题的亲和力随着时间而变化的时候。SEERa预测用户向量在潜在空间中的最终位置。值得注意的是,我们的框架为社会信息检索和社会推荐系统的未来用户社区提供一站式服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEERa: A Framework for Community Prediction
Online user communities exhibit distinct temporal dynamics in response to popular topics or breaking events. Despite abundant community detection libraries, there is yet to be one that provides access to the possible user communities in future time intervals. To bridge this gap, we contribute SEERa, an open-source end-to-end community prediction framework to identify future user communities in a text streaming social network. SEERa incorporates state-of-the-art temporal graph neural networks to model inter-user topical affinities at each time interval via streams of temporal graphs. This all takes place while users' topics of interest and hence their inter-user topical affinities are changing over time. SEERa predicts yet-to-be-seen user communities on the final positions of users' vectors in the latent space. Notably, our framework serves as a one-stop-shop to future user communities for Social Information Retrieval and Social Recommendation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信