货物订单

Yuang Chen, Y. Chung
{"title":"货物订单","authors":"Yuang Chen, Y. Chung","doi":"10.1145/3437801.3441606","DOIUrl":null,"url":null,"abstract":"The intrinsic irregular data structure of graphs often causes poor cache utilization thus deteriorates the performance of graph analytics. Prior works have designed a variety of graph reordering methods to improve cache efficiency. However, little insight has been provided into the issue of workload imbalance for multicore systems. In this work, we identify that a major factor affecting the performance is the unevenly distributed computation load amongst cores. To cope with this problem, we propose cache-aware reordering (Corder), a lightweight reordering algorithm that facilitates workload balance as well as cache optimization. Comprehensive performance evaluation of Corder is conducted on various graph applications and datasets. We observe that Corder yields speedup of up to 2.59× (on average 1.47×) over original graphs.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corder\",\"authors\":\"Yuang Chen, Y. Chung\",\"doi\":\"10.1145/3437801.3441606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intrinsic irregular data structure of graphs often causes poor cache utilization thus deteriorates the performance of graph analytics. Prior works have designed a variety of graph reordering methods to improve cache efficiency. However, little insight has been provided into the issue of workload imbalance for multicore systems. In this work, we identify that a major factor affecting the performance is the unevenly distributed computation load amongst cores. To cope with this problem, we propose cache-aware reordering (Corder), a lightweight reordering algorithm that facilitates workload balance as well as cache optimization. Comprehensive performance evaluation of Corder is conducted on various graph applications and datasets. We observe that Corder yields speedup of up to 2.59× (on average 1.47×) over original graphs.\",\"PeriodicalId\":124852,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437801.3441606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corder
The intrinsic irregular data structure of graphs often causes poor cache utilization thus deteriorates the performance of graph analytics. Prior works have designed a variety of graph reordering methods to improve cache efficiency. However, little insight has been provided into the issue of workload imbalance for multicore systems. In this work, we identify that a major factor affecting the performance is the unevenly distributed computation load amongst cores. To cope with this problem, we propose cache-aware reordering (Corder), a lightweight reordering algorithm that facilitates workload balance as well as cache optimization. Comprehensive performance evaluation of Corder is conducted on various graph applications and datasets. We observe that Corder yields speedup of up to 2.59× (on average 1.47×) over original graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信