{"title":"基于n阱CMOS技术的100mhz同步OEIC光电接收器","authors":"K. Ayadi, P. Danielsen","doi":"10.1109/COMMAD.1998.791670","DOIUrl":null,"url":null,"abstract":"We analyze and demonstrate a synchronized CMOS photoreceiver for the conversion of optical inputs of pulse-light to electronic digital signals. Small-signal and photonic analysis of the proposed circuit are detailed. The photoreceiver was operated at 100 MHz with only 13.3 fJ/pulse of 830-nm input light. Its effective area is 100/spl times/60 /spl mu/m/sup 2/ which makes this monolithic photoreceiver extremely important for use in data storage and optical interconnection applications.","PeriodicalId":300064,"journal":{"name":"1998 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings (Cat. No.98EX140)","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 100 MHz synchronized OEIC photoreceiver in n-well, CMOS technology\",\"authors\":\"K. Ayadi, P. Danielsen\",\"doi\":\"10.1109/COMMAD.1998.791670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze and demonstrate a synchronized CMOS photoreceiver for the conversion of optical inputs of pulse-light to electronic digital signals. Small-signal and photonic analysis of the proposed circuit are detailed. The photoreceiver was operated at 100 MHz with only 13.3 fJ/pulse of 830-nm input light. Its effective area is 100/spl times/60 /spl mu/m/sup 2/ which makes this monolithic photoreceiver extremely important for use in data storage and optical interconnection applications.\",\"PeriodicalId\":300064,\"journal\":{\"name\":\"1998 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings (Cat. No.98EX140)\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings (Cat. No.98EX140)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.1998.791670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings (Cat. No.98EX140)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.1998.791670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 100 MHz synchronized OEIC photoreceiver in n-well, CMOS technology
We analyze and demonstrate a synchronized CMOS photoreceiver for the conversion of optical inputs of pulse-light to electronic digital signals. Small-signal and photonic analysis of the proposed circuit are detailed. The photoreceiver was operated at 100 MHz with only 13.3 fJ/pulse of 830-nm input light. Its effective area is 100/spl times/60 /spl mu/m/sup 2/ which makes this monolithic photoreceiver extremely important for use in data storage and optical interconnection applications.