{"title":"使用NLOS toa或tdoa的基于鲁棒核的机器学习定位","authors":"Jun Li, I. Lu, Jonathan S. Lu, Lingwen Zhang","doi":"10.1109/LISAT.2017.8001981","DOIUrl":null,"url":null,"abstract":"A robust kernel-based machine learning localization scheme using time of arrival (TOA) or time difference of arrival (TDOA) in none-line-of-sight (NLOS) environments is proposed. The scheme can provide accurate position estimation while the reference nodes are coarsely and randomly distributed in the area of interests. Moreover, the scheme is insensitive with respect to random TOA synchronization and measurement errors.","PeriodicalId":370931,"journal":{"name":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Robust kernel-based machine learning localization using NLOS TOAs or TDOAs\",\"authors\":\"Jun Li, I. Lu, Jonathan S. Lu, Lingwen Zhang\",\"doi\":\"10.1109/LISAT.2017.8001981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust kernel-based machine learning localization scheme using time of arrival (TOA) or time difference of arrival (TDOA) in none-line-of-sight (NLOS) environments is proposed. The scheme can provide accurate position estimation while the reference nodes are coarsely and randomly distributed in the area of interests. Moreover, the scheme is insensitive with respect to random TOA synchronization and measurement errors.\",\"PeriodicalId\":370931,\"journal\":{\"name\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISAT.2017.8001981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT.2017.8001981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust kernel-based machine learning localization using NLOS TOAs or TDOAs
A robust kernel-based machine learning localization scheme using time of arrival (TOA) or time difference of arrival (TDOA) in none-line-of-sight (NLOS) environments is proposed. The scheme can provide accurate position estimation while the reference nodes are coarsely and randomly distributed in the area of interests. Moreover, the scheme is insensitive with respect to random TOA synchronization and measurement errors.