{"title":"部分等距的一些度量和同伦性质","authors":"L. G. Brown","doi":"10.3318/pria.2016.116.08","DOIUrl":null,"url":null,"abstract":"We show that ||u*u - v*v|| \\leq ||u - v|| for partial isometries u and v. There is a stronger inequality if both u and v are extreme points of the unit ball of a C*-algebra, and both inequalities are sharp. If u and v are partial isometries in a C*-algebra A such that ||u - v|| < 1, then u and v are homotopic through partial isometries in A. If both u and v are extremal, then it is sufficient that ||u - v|| < 2. The constants 1 and 2 are both sharp. We also discuss the continuity points of the map which assigns to each closed range element of A the partial isometry in its canonical polar decomposition.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Metric and Homotopy Properties of Partial Isometries\",\"authors\":\"L. G. Brown\",\"doi\":\"10.3318/pria.2016.116.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that ||u*u - v*v|| \\\\leq ||u - v|| for partial isometries u and v. There is a stronger inequality if both u and v are extreme points of the unit ball of a C*-algebra, and both inequalities are sharp. If u and v are partial isometries in a C*-algebra A such that ||u - v|| < 1, then u and v are homotopic through partial isometries in A. If both u and v are extremal, then it is sufficient that ||u - v|| < 2. The constants 1 and 2 are both sharp. We also discuss the continuity points of the map which assigns to each closed range element of A the partial isometry in its canonical polar decomposition.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2016.116.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2016.116.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some Metric and Homotopy Properties of Partial Isometries
We show that ||u*u - v*v|| \leq ||u - v|| for partial isometries u and v. There is a stronger inequality if both u and v are extreme points of the unit ball of a C*-algebra, and both inequalities are sharp. If u and v are partial isometries in a C*-algebra A such that ||u - v|| < 1, then u and v are homotopic through partial isometries in A. If both u and v are extremal, then it is sufficient that ||u - v|| < 2. The constants 1 and 2 are both sharp. We also discuss the continuity points of the map which assigns to each closed range element of A the partial isometry in its canonical polar decomposition.