Bohrium:一种可移植并行的虚拟机方法

M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter
{"title":"Bohrium:一种可移植并行的虚拟机方法","authors":"M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter","doi":"10.1109/IPDPSW.2014.44","DOIUrl":null,"url":null,"abstract":"In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Bohrium: A Virtual Machine Approach to Portable Parallelism\",\"authors\":\"M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter\",\"doi\":\"10.1109/IPDPSW.2014.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们介绍了Bohrium,一个用于将矢量操作映射到许多不同硬件平台的运行时系统,从简单的多核系统到集群和支持GPU的系统。为了做出有效的选择,Bohrium被实现为一个做出运行时决策的虚拟机,而不是一个更常见的静态编译库。原则上,Bohrium可以用于任何编程语言,但目前支持的语言仅限于Python、c++和Python。. Net框架,例如c#和f#。主要的成功标准是从底层细节中保持一个完整的抽象,并在不同的、当前的和未来的处理器之间提供有效的代码执行。我们通过针对多核CPU,八节点集群和GPU的设置来评估所提出的设计,所有这些都是初步原型。评估包括三个著名的基准应用程序:Black Sholes、Shallow Water和N-body,分别用c++、Python和c#实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bohrium: A Virtual Machine Approach to Portable Parallelism
In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信