M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter
{"title":"Bohrium:一种可移植并行的虚拟机方法","authors":"M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter","doi":"10.1109/IPDPSW.2014.44","DOIUrl":null,"url":null,"abstract":"In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Bohrium: A Virtual Machine Approach to Portable Parallelism\",\"authors\":\"M. R. B. Kristensen, S. Lund, Troels Blum, K. Skovhede, B. Vinter\",\"doi\":\"10.1109/IPDPSW.2014.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bohrium: A Virtual Machine Approach to Portable Parallelism
In this paper we introduce, Bohrium, a runtime-system for mapping vector operations onto a number of different hardware platforms, from simple multi-core systems to clusters and GPU enabled systems. In order to make efficient choices Bohrium is implemented as a virtual machine that makes runtime decisions, rather than a statically compiled library, which is the more common approach. In principle, Bohrium can be used for any programming language but for now, the supported languages are limited to Python, C++ and the. Net framework, e.g. C# and F#. The primary success criteria are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, current and future, processors. We evaluate the presented design through a setup that targets a multi-core CPU, an eight-node Cluster, and a GPU, all preliminary prototypes. The evaluation includes three well-known benchmark applications, Black Sholes, Shallow Water, and N-body, implemented in C++, Python, and C# respectively.