{"title":"基于MIMO-OFDM的LED指数调制的信道估计和物理层安全","authors":"Furkan Batuhan Okumus, E. Panayirci, M. Khalighi","doi":"10.1109/SSP53291.2023.10208079","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new and low-complexity channel estimation algorithm for the generalized LED index modulation (GLIM), recently proposed for visible-light communication systems based on multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM). For this scheme, denoted by GLIM-OFDM, we investigate the bit-error rate (BER), the mean-square error (MSE) of channel estimation, as well as the Cramer-Rao bound on the latter. Furthermore, we present a novel physical layer security (PLS) technique for the GLIM-OFDM scheme using precoding at the transmitter assuming it has the channel state information (CSI) between the LEDs and a legitimate user, but no knowledge of the CSI corresponding to eavesdroppers. The efficiency of the proposed PLS technique is demonstrated through numerical results.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Estimation and Physical Layer Security in Optical MIMO-OFDM based LED Index Modulation\",\"authors\":\"Furkan Batuhan Okumus, E. Panayirci, M. Khalighi\",\"doi\":\"10.1109/SSP53291.2023.10208079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new and low-complexity channel estimation algorithm for the generalized LED index modulation (GLIM), recently proposed for visible-light communication systems based on multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM). For this scheme, denoted by GLIM-OFDM, we investigate the bit-error rate (BER), the mean-square error (MSE) of channel estimation, as well as the Cramer-Rao bound on the latter. Furthermore, we present a novel physical layer security (PLS) technique for the GLIM-OFDM scheme using precoding at the transmitter assuming it has the channel state information (CSI) between the LEDs and a legitimate user, but no knowledge of the CSI corresponding to eavesdroppers. The efficiency of the proposed PLS technique is demonstrated through numerical results.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel Estimation and Physical Layer Security in Optical MIMO-OFDM based LED Index Modulation
In this paper, we propose a new and low-complexity channel estimation algorithm for the generalized LED index modulation (GLIM), recently proposed for visible-light communication systems based on multi-input multi-output (MIMO) and orthogonal frequency-division multiplexing (OFDM). For this scheme, denoted by GLIM-OFDM, we investigate the bit-error rate (BER), the mean-square error (MSE) of channel estimation, as well as the Cramer-Rao bound on the latter. Furthermore, we present a novel physical layer security (PLS) technique for the GLIM-OFDM scheme using precoding at the transmitter assuming it has the channel state information (CSI) between the LEDs and a legitimate user, but no knowledge of the CSI corresponding to eavesdroppers. The efficiency of the proposed PLS technique is demonstrated through numerical results.