基于自动实时网络摄像头的心率监测系统

S. Mukherjee, Nabarun Mukhopadhyay, S. Das, Ritesh Kumar Addya, Subhajit Bera, Shrishti, Debnath, Sudipta Basu Pal, Piyali Chandra
{"title":"基于自动实时网络摄像头的心率监测系统","authors":"S. Mukherjee, Nabarun Mukhopadhyay, S. Das, Ritesh Kumar Addya, Subhajit Bera, Shrishti, Debnath, Sudipta Basu Pal, Piyali Chandra","doi":"10.15864/ajec.3101","DOIUrl":null,"url":null,"abstract":"- In the current situation of COVID 19, a contactless method of measuring heart rate is essential. This project focuses on real-time heart rate detection using a simple webcam. It uses OpenCV for face detection, and then it isolates the forehead part. The heart rate is determined by measuring the average optical intensity in the forehead region. Here we have used face detection, filtering and peak detection in the FFT domain. A stable heartbeat can be isolated in about 15 seconds when there is good lighting and minimum noise. After the estimation of the user's heart rate, real-time phase variation associated with this frequency is also computed. Support for detection on more than one individual at a time in a single camera's image is also possible. Still, only the information from a single face is taken for analysis.","PeriodicalId":280977,"journal":{"name":"American Journal of Electronics & Communication","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Realtime Webcam based Heart Rate Monitoring System\",\"authors\":\"S. Mukherjee, Nabarun Mukhopadhyay, S. Das, Ritesh Kumar Addya, Subhajit Bera, Shrishti, Debnath, Sudipta Basu Pal, Piyali Chandra\",\"doi\":\"10.15864/ajec.3101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- In the current situation of COVID 19, a contactless method of measuring heart rate is essential. This project focuses on real-time heart rate detection using a simple webcam. It uses OpenCV for face detection, and then it isolates the forehead part. The heart rate is determined by measuring the average optical intensity in the forehead region. Here we have used face detection, filtering and peak detection in the FFT domain. A stable heartbeat can be isolated in about 15 seconds when there is good lighting and minimum noise. After the estimation of the user's heart rate, real-time phase variation associated with this frequency is also computed. Support for detection on more than one individual at a time in a single camera's image is also possible. Still, only the information from a single face is taken for analysis.\",\"PeriodicalId\":280977,\"journal\":{\"name\":\"American Journal of Electronics & Communication\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Electronics & Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15864/ajec.3101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electronics & Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15864/ajec.3101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

—在COVID - 19的当前情况下,使用非接触式测量心率的方法是必不可少的。这个项目的重点是使用一个简单的网络摄像头进行实时心率检测。首先利用OpenCV进行人脸检测,然后分离出人脸的前额部分。心率是通过测量前额区域的平均光强度来确定的。这里我们使用了FFT域的人脸检测、滤波和峰值检测。在良好的照明和最小的噪音条件下,稳定的心跳可以在大约15秒内被隔离出来。在估计出用户的心率后,还计算出与该频率相关的实时相位变化。支持在单个相机的图像中同时对多个个体进行检测也是可能的。尽管如此,只有来自单一面孔的信息被用于分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Realtime Webcam based Heart Rate Monitoring System
- In the current situation of COVID 19, a contactless method of measuring heart rate is essential. This project focuses on real-time heart rate detection using a simple webcam. It uses OpenCV for face detection, and then it isolates the forehead part. The heart rate is determined by measuring the average optical intensity in the forehead region. Here we have used face detection, filtering and peak detection in the FFT domain. A stable heartbeat can be isolated in about 15 seconds when there is good lighting and minimum noise. After the estimation of the user's heart rate, real-time phase variation associated with this frequency is also computed. Support for detection on more than one individual at a time in a single camera's image is also possible. Still, only the information from a single face is taken for analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信