W. B. Zulfikar, A. Wahana, Richcy Dian Sukma, D. R. Ramdania, D. Maylawati
{"title":"基于聚类分层聚类的Covid-19大流行期间游戏受欢迎程度研究","authors":"W. B. Zulfikar, A. Wahana, Richcy Dian Sukma, D. R. Ramdania, D. Maylawati","doi":"10.1109/CITSM56380.2022.9936040","DOIUrl":null,"url":null,"abstract":"During the COVID-19 pandemic, various activities of people outside the home were disrupted and made people move more indoors. For some companies take advantage of this pandemic period as their advantage, especially digital game industry companies. Various games have been released and promoted, these games are published on various game platforms. Currently, Steam is one of the biggest gaming platforms. On this platform, there are a lot of games offered by game developers and provide game pages that are currently popular. However, the website does not provide the popularity level of the currently popular games. This causes ambiguity in determining which games have high, medium, or low popularity. This study tries to create a machine learning model to cluster these games into groups using Agglomerative Hierarchical Clusterin. The distance measure used is euclidean, cosine and manhattan/cityblock and uses single, average, complete and ward linkage. Based on the evaluation results, the best cluster results are the silhouette value of 0.639 and the calinski-harabasz value of 90.192.","PeriodicalId":342813,"journal":{"name":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Game Popularity Level During Covid-19 Pandemic Using Agglomerative Hierarchical Clustering\",\"authors\":\"W. B. Zulfikar, A. Wahana, Richcy Dian Sukma, D. R. Ramdania, D. Maylawati\",\"doi\":\"10.1109/CITSM56380.2022.9936040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the COVID-19 pandemic, various activities of people outside the home were disrupted and made people move more indoors. For some companies take advantage of this pandemic period as their advantage, especially digital game industry companies. Various games have been released and promoted, these games are published on various game platforms. Currently, Steam is one of the biggest gaming platforms. On this platform, there are a lot of games offered by game developers and provide game pages that are currently popular. However, the website does not provide the popularity level of the currently popular games. This causes ambiguity in determining which games have high, medium, or low popularity. This study tries to create a machine learning model to cluster these games into groups using Agglomerative Hierarchical Clusterin. The distance measure used is euclidean, cosine and manhattan/cityblock and uses single, average, complete and ward linkage. Based on the evaluation results, the best cluster results are the silhouette value of 0.639 and the calinski-harabasz value of 90.192.\",\"PeriodicalId\":342813,\"journal\":{\"name\":\"2022 10th International Conference on Cyber and IT Service Management (CITSM)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Conference on Cyber and IT Service Management (CITSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITSM56380.2022.9936040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Cyber and IT Service Management (CITSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITSM56380.2022.9936040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Game Popularity Level During Covid-19 Pandemic Using Agglomerative Hierarchical Clustering
During the COVID-19 pandemic, various activities of people outside the home were disrupted and made people move more indoors. For some companies take advantage of this pandemic period as their advantage, especially digital game industry companies. Various games have been released and promoted, these games are published on various game platforms. Currently, Steam is one of the biggest gaming platforms. On this platform, there are a lot of games offered by game developers and provide game pages that are currently popular. However, the website does not provide the popularity level of the currently popular games. This causes ambiguity in determining which games have high, medium, or low popularity. This study tries to create a machine learning model to cluster these games into groups using Agglomerative Hierarchical Clusterin. The distance measure used is euclidean, cosine and manhattan/cityblock and uses single, average, complete and ward linkage. Based on the evaluation results, the best cluster results are the silhouette value of 0.639 and the calinski-harabasz value of 90.192.