Bruno Madureira, T. Pinto, F. Fernandes, Z. Vale, C. Ramos
{"title":"基于人工神经网络的居住建筑能源管理情境分类","authors":"Bruno Madureira, T. Pinto, F. Fernandes, Z. Vale, C. Ramos","doi":"10.1109/INTELLISYS.2017.8324297","DOIUrl":null,"url":null,"abstract":"This paper proposes an Artificial Neural Network (ANN) based approach to classify different contexts, with the goal of enhancing the management of residential energy resources. The increasing penetration of renewable based generation has completely changed the paradigm of the power and energy sector. The intermittent nature of these resources requires the system to incentivize the adaptability of consumers in order to guarantee the balance between generation and consumption. This leads to the emergence of several incentives with the objective of increasing the flexibility from the consumer's side. This, allied to the increasing price of electricity, leads to an increasing need for consumers to adapt their consumption in order to improve energy efficiency, decrease energy bills, and achieve a better use of their own generation resources. With this, several House Management Systems (HMS), and Building Energy Management Systems (BEMS) have emerged. These systems allow adapting the consumption (or suggesting changes in consumers' habits) according to several factors. However, in order to make this management truly smart, there is a need for adaptation to different contexts, so that changes can be done accordingly to the different situations that are faced at each time. This paper addresses this problem by proposing a novel methodology that enables classifying different situations in different contexts, according to different contextual variables.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context classification in energy resource management of residential buildings using Artificial Neural Network\",\"authors\":\"Bruno Madureira, T. Pinto, F. Fernandes, Z. Vale, C. Ramos\",\"doi\":\"10.1109/INTELLISYS.2017.8324297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an Artificial Neural Network (ANN) based approach to classify different contexts, with the goal of enhancing the management of residential energy resources. The increasing penetration of renewable based generation has completely changed the paradigm of the power and energy sector. The intermittent nature of these resources requires the system to incentivize the adaptability of consumers in order to guarantee the balance between generation and consumption. This leads to the emergence of several incentives with the objective of increasing the flexibility from the consumer's side. This, allied to the increasing price of electricity, leads to an increasing need for consumers to adapt their consumption in order to improve energy efficiency, decrease energy bills, and achieve a better use of their own generation resources. With this, several House Management Systems (HMS), and Building Energy Management Systems (BEMS) have emerged. These systems allow adapting the consumption (or suggesting changes in consumers' habits) according to several factors. However, in order to make this management truly smart, there is a need for adaptation to different contexts, so that changes can be done accordingly to the different situations that are faced at each time. This paper addresses this problem by proposing a novel methodology that enables classifying different situations in different contexts, according to different contextual variables.\",\"PeriodicalId\":131825,\"journal\":{\"name\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELLISYS.2017.8324297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context classification in energy resource management of residential buildings using Artificial Neural Network
This paper proposes an Artificial Neural Network (ANN) based approach to classify different contexts, with the goal of enhancing the management of residential energy resources. The increasing penetration of renewable based generation has completely changed the paradigm of the power and energy sector. The intermittent nature of these resources requires the system to incentivize the adaptability of consumers in order to guarantee the balance between generation and consumption. This leads to the emergence of several incentives with the objective of increasing the flexibility from the consumer's side. This, allied to the increasing price of electricity, leads to an increasing need for consumers to adapt their consumption in order to improve energy efficiency, decrease energy bills, and achieve a better use of their own generation resources. With this, several House Management Systems (HMS), and Building Energy Management Systems (BEMS) have emerged. These systems allow adapting the consumption (or suggesting changes in consumers' habits) according to several factors. However, in order to make this management truly smart, there is a need for adaptation to different contexts, so that changes can be done accordingly to the different situations that are faced at each time. This paper addresses this problem by proposing a novel methodology that enables classifying different situations in different contexts, according to different contextual variables.